精英家教网 > 高中数学 > 题目详情
13.等差数列{an}的前n项之和为Sn,若S10=20,S20=50,则S30=90.

分析 由等差数列{an}的性质可得:S10,S20-S10,S30-S20成等差数列,即可得出.

解答 解:由等差数列{an}的性质可得:S10,S20-S10,S30-S20成等差数列,
∴2(S20-S10)=S10+(S30-S20),
∴2×(50-20)=20+(S30-50),
解得S30=90,
故答案为:90.

点评 本题考查了等差数列的前n项和的性质、等差数列的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=(x-x1)(x-x2)(x-x3)(其中x1<x2<x3),g(x)=ex-e-x,且函数f(x)的两个极值点为α,β(α<β).设λ=$\frac{{x}_{1}+{x}_{2}}{2}$,μ=$\frac{{{x}_{2}+x}_{3}}{2}$,则(  )
A.g(α)<g(λ)<g(β)<g(μ)B.g(λ)<g(α)<g(β)<g(μ)C.g(λ)<g(α)<g(μ)<g(β)D.g(α)<g(λ)<g(μ)<g(β)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.椭圆C:$\frac{{x}^{2}}{3}$+$\frac{{y}^{2}}{2}$=1的右焦点F,过焦点F的直线l0⊥x轴,P(x0,y0)(x0y0≠0)为C上任意一点,C在点P处的切线为l,l与l0相交于点M,与直线l1:x=3相交于N.
(I) 求证;直线$\frac{{x}_{0}x}{3}$+$\frac{{y}_{0}y}{2}$=1是椭圆C在点P处的切线;
(Ⅱ)求证:$\frac{|FM|}{|FN|}$为定值,并求此定值;
(Ⅲ)请问△ONP(O为坐标原点)的面积是否存在最小值?若存在,请求出最小及此时点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.解方程:2(x4+1)-3x(x2-1)-4x2=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图所示,已知空间四边形ABCD的各边和对角线的长都等于a,点M、N分别是AB、CD的中点.
(1)求证:MN⊥AB,MN⊥CD;
(2)求MN的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.某校对高三年级的学生进行体检,现将高三男生的体重(单位:kg)数据进行整理后分成六组,并绘制频率分布直方图(如图).已知图中从左到右第一、第六小组的频率分别为0.16、0.07,第一、第二、第三小组的频率成等比数列,第三、第四、第五、第六小组的频率成等差数列,且第三小组的频数为236,则该校高三年级的男生总数为(  )
A.800B.960C.944D.888

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.f(x)═ax2+bx+c,若关于x的不等式f(x-1)≥0的解集为[0,1],则关于x的不等式f(x+1)≤0的解集为{x|x≥-1,或x≤-2}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知正三棱锥S-ABC底面边长为2$\sqrt{3}$,过侧棱SA与底面中心O作截面SAD,在△SAD中,若SA=AD,求侧面与底面所成二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的焦距为$2\sqrt{3}$,且右焦点F与短轴的两个端点组成一个正三角形.若直线l与椭圆C交于A(x1,y1)、B(x2,y2),且在椭圆C上存在点M,使得:$\overrightarrow{OM}=\frac{3}{5}\overrightarrow{OA}+\frac{4}{5}\overrightarrow{OB}$(其中O为坐标原点),则称直线l具有性质H.
(1)求椭圆C的方程;
(2)若直线l垂直于x轴,且具有性质H,求直线l的方程;
(3)求证:在椭圆C上不存在三个不同的点P、Q、R,使得直线PQ、QR、RP都具有性质H.

查看答案和解析>>

同步练习册答案