精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=(x-x1)(x-x2)(x-x3)(其中x1<x2<x3),g(x)=ex-e-x,且函数f(x)的两个极值点为α,β(α<β).设λ=$\frac{{x}_{1}+{x}_{2}}{2}$,μ=$\frac{{{x}_{2}+x}_{3}}{2}$,则(  )
A.g(α)<g(λ)<g(β)<g(μ)B.g(λ)<g(α)<g(β)<g(μ)C.g(λ)<g(α)<g(μ)<g(β)D.g(α)<g(λ)<g(μ)<g(β)

分析 结合一元二次函数的性质判断α<λ<μ<β,判断函数g(x)的单调性进行判断即可.

解答 解:由题意,f′(x)=(x-x1)(x-x2)+(x-x2)(x-x3)+(x-x1)(x-x3),
∵f′($\frac{{x}_{1}+{x}_{2}}{2}$)=-$\frac{({x}_{2}-{x}_{1})^{2}}{4}$<0,f′($\frac{{{x}_{2}+x}_{3}}{2}$)=-$\frac{({x}_{2}-{x}_{3})^{2}}{4}$<0,
∵f(x)在(-∞,α),(β,+∞)上递增,(α,β)上递减,
∴α<λ<μ<β,
∵g(x)=ex-e-x单调递增,
∴g(α)<g(λ)<g(μ)<g(β)
故选:D.

点评 本题主要考查函数值的大小比较,根据条件判断函数的单调性,以及a<λ<μ<β是解决本题的关键.综合性较强,难度较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.在1时15分时,时针与分针所成的最小正角是$\frac{7π}{24}$弧度.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$短轴长2,离心率$\frac{{\sqrt{2}}}{2}$
(1)求椭圆的方程;
(2)若y=kx+m与x2+y2=$\frac{2}{3}$相切,与椭圆交于A,B两点,当A,B两点横坐标不相等时,证明以AB为直径的圆恰过原点O.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.(理科)如图所示的封闭曲线C由曲线C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0,y≥0)和曲线C2:y=nx2-1(y<0)组成,已知曲线C1过点($\sqrt{3}$,$\frac{1}{2}$),离心率为$\frac{\sqrt{3}}{2}$,点A、B分别为曲线C与x轴、y轴的一个交点.
(Ⅰ)求曲线C1和C2的方程;
(Ⅱ)若点Q是曲线C2上的任意点,求△QAB面积的最大值及点Q的坐标;
(Ⅲ)若点F为曲线C1的右焦点,直线l:y=kx+m与曲线C1相切于点M,且与直线x=$\frac{4\sqrt{3}}{3}$交于点N,求证:以MN为直径的圆过点F.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=x-aln(x+1)
(1)试探究函数f(x)在(0,+∞)上的极值;
(2)若对任意的x∈[1,2],f(x)≥x2恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.过点P($\sqrt{3}$,1)的直线l与圆x2+y2=1有公共点,则直线l的倾斜角的取值范围是(  )
A.(0,$\frac{π}{6}$]B.(0,$\frac{π}{3}$]C.[0,$\frac{π}{6}$]D.[0,$\frac{π}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知矩形ABCD的顶点C(4,4),点A在圆O:x2+y2=9(x≥0,y≥0)上移动,且AB,AD两边始终分别平行于x轴、y轴,求矩形ABCD面积S的最小值与最大值,以及相应的点A的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.正四棱锥S-ABCD的底面边长为2,高为1,E是边BC的中点,动点P在四棱锥表面上运动,并且总保持PE⊥AC,则动点P的轨迹的周长为$\sqrt{2}$+$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.等差数列{an}的前n项之和为Sn,若S10=20,S20=50,则S30=90.

查看答案和解析>>

同步练习册答案