精英家教网 > 高中数学 > 题目详情
11.设数列{an}满足an=$\frac{1}{\sqrt{4n-3}}$(n∈N*),bn=a2n+1+a2n+2+…+a22n+1,则bn-bn+1=$\frac{1}{4n+1}$-($\frac{1}{8n+5}$+$\frac{1}{8n+9}$).

分析 通过an=$\frac{1}{\sqrt{4n-3}}$可知${{a}_{n}}^{2}$=$\frac{1}{4n-3}$(n∈N*),进而计算可得结论.

解答 解:∵an=$\frac{1}{\sqrt{4n-3}}$(n∈N*),
∴${{a}_{n}}^{2}$=$\frac{1}{4n-3}$(n∈N*),
又∵bn=a2n+1+a2n+2+…+a22n+1
∴bn+1=a2n+2+a2n+3+…+a22n+1+a22n+2+a22n+3
∴bn-bn+1=a2n+1-(a22n+2+a22n+3
=$\frac{1}{4n+1}$-($\frac{1}{8n+5}$+$\frac{1}{8n+9}$),
故答案为:$\frac{1}{4n+1}$-($\frac{1}{8n+5}$+$\frac{1}{8n+9}$).

点评 本题考查数列的求和,考查运算求解能力,注意解题方法的积累,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知数列{an}满足a1=2,an>0,且$\frac{{{a}_{n+1}}^{2}}{4}$-$\frac{{{a}_{n}}^{2}}{4}$=1.(n∈N+)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知F1,F2是离心率为$\frac{1}{2}$的椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,椭圆C与抛物线y2=4x在第一象限的交点为P,F是抛物线的焦点,|PF|=$\frac{5}{3}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若过点F1的直线l与椭圆C相交于M,N两点,求$\overrightarrow{{F}_{2}M}$$•\overrightarrow{{F}_{2}N}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若α是第二象限角,且sinα=$\frac{3}{5}$,则cosα=(  )
A.$\frac{3}{4}$B.-$\frac{4}{3}$C.-$\frac{4}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知a,b,c为不全相等的实数,P=a2+b2+c2+3,Q=2(a+b+c),那么P与Q的大小关系是(  )
A.P>QB.P≥QC.P<QD.P≤Q

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设k≠0,若函数y1=(x-k)2+2k和y2=-(x+k)2-2k的图象与y轴依次交于A,B两点,函数y1,y2的图象的顶点分别为C,D.
(1)当k=1时,请在同一直角坐标系中,分别画出函数y1,y2的草图,并根据图形,写出y1,y2两图象的位置关系;
(2)当-2<k<0时,求线段AB长的取值范围;
(3)A,B,C,D四点构成的图形是否为平行四边形?若是平行四边形,则是否构成菱形或矩形?若能构成菱形或矩形,请直接写出k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数y=lg(x2-4)+$\sqrt{{x}^{2}+6x}$的定义域是(  )
A.(-∞,-2)∪[0,+∞)B.(-∞,-6]∪(2,+∞)C.(-∞,-2]∪[0,+∞)D.(-∞,-6)∪[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-2,5),$\overrightarrow{c}$=(x,y),若$\overrightarrow{a}$∥($\overrightarrow{b}$+$\overrightarrow{c}$),$\overrightarrow{b}$⊥$\overrightarrow{c}$,则x+y=$\frac{63}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设全集U=R,P={x|(x+1)(x-2)<0},Q={x|x2-3x>0},则图中的阴影部分表示的集合为(  )
A.{x|-1<x≤3}B.{x|-1<x<0}C.{x|-1<x≤0或2<x≤3}D.{x|0≤x<2}

查看答案和解析>>

同步练习册答案