16£®Éèk¡Ù0£¬Èôº¯Êýy1=£¨x-k£©2+2kºÍy2=-£¨x+k£©2-2kµÄͼÏóÓëyÖáÒÀ´Î½»ÓÚA£¬BÁ½µã£¬º¯Êýy1£¬y2µÄͼÏóµÄ¶¥µã·Ö±ðΪC£¬D£®
£¨1£©µ±k=1ʱ£¬ÇëÔÚͬһֱ½Ç×ø±êϵÖУ¬·Ö±ð»­³öº¯Êýy1£¬y2µÄ²Ýͼ£¬²¢¸ù¾ÝͼÐΣ¬Ð´³öy1£¬y2Á½Í¼ÏóµÄλÖùØÏµ£»
£¨2£©µ±-2£¼k£¼0ʱ£¬ÇóÏß¶ÎAB³¤µÄȡֵ·¶Î§£»
£¨3£©A£¬B£¬C£¬DËĵ㹹³ÉµÄͼÐÎÊÇ·ñΪƽÐÐËıßÐΣ¿ÈôÊÇÆ½ÐÐËıßÐΣ¬ÔòÊÇ·ñ¹¹³ÉÁâÐλò¾ØÐΣ¿ÈôÄܹ¹³ÉÁâÐλò¾ØÐΣ¬ÇëÖ±½Óд³ökµÄÖµ£®

·ÖÎö £¨1£©È¡k=1¿ÉµÃÁ½º¯Êý½âÎöʽ£¬²¢×÷³ö²Ýͼ£»
£¨2£©Óɺ¯Êý½âÎöʽÇó³öA£¬B£¬C£¬DµÄ×ø±ê£¬½øÒ»²½ÇóµÃAB£¬ÀûÓöþ´Îº¯ÊýÇóµÃ·¶Î§£»
£¨3£©·Ö±ðÇó³öAC¡¢BD¡¢AD¡¢BCËùÔÚÖ±ÏßµÄбÂÊ£¬ÓÉбÂÊÏàµÈ¿ÉµÃA£¬B£¬C£¬DËĵ㹹³ÉµÄËıßÐÎADBCÊÇÆ½ÐÐËıßÐΣ¬ÔÙÓɶԽÇÏßбÂÊ·ÖÎö¿ÉÖªËıßÐÎADBC²»Äܹ¹³ÉÁâÐΣ®

½â´ð ½â£º£¨1£©Èçͼ£¬${y}_{1}=£¨x-1£©^{2}+2£¬{y}_{2}=-£¨x+1£©^{2}-2$£»
£¨2£©ÔÚº¯Êýy1=£¨x-k£©2+2kºÍy2=-£¨x+k£©2-2kÖУ¬
·Ö±ðÈ¡x=0£¬µÃ${y}_{1}={k}^{2}+2k£¬{y}_{2}=-{k}^{2}-2k$£¬
¡àA£¨0£¬k2+2k£©£¬B£¨0£¬-k2-2k£©£¬
¡à|AB|=|k2+2k+k2+2k|=2|k2+2k|£¬
¡ß-2£¼k£¼0£¬¡àk2+2k¡Ê[-1£¬0£©£¬
Ôò|AB|=2|k2+2k|¡Ê£¨0£¬2]£»
£¨3£©ÓÉÌâÒâ¿ÉµÃ£ºA£¨0£¬k2+2k£©£¬B£¨0£¬-k2-2k£©£¬
C£¨k£¬2k£©£¬D£¨-k£¬-2k£©£¬
Ôò${k}_{AC}=\frac{{k}^{2}}{-k}=-k£¬{k}_{BD}=\frac{-{k}^{2}}{k}=-k$£¬${k}_{AD}=\frac{{k}^{2}+4k}{k}=k+4£¬{k}_{BC}=\frac{-{k}^{2}-4k}{-k}=k+4$£¬
¡àA£¬B£¬C£¬DËĵ㹹³ÉµÄËıßÐÎADBCÊÇÆ½ÐÐËıßÐΣ¬
¡ß${k}_{CD}=\frac{4k}{2k}=2$£¬ÇÒABµÄбÂʲ»´æÔÚ£¬
¡à²»Äܹ¹³ÉÁâÐΣ®

µãÆÀ ±¾Ì⿼²éº¯ÊýµÄͼÏ󣬿¼²éÁ˺¯Êý½âÎöʽµÄÇó½â¼°³£Ó÷½·¨£¬¿¼²éÁËÊýÐνáºÏµÄ½âÌâ˼Ïë·½·¨£¬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÏòÁ¿$\overrightarrow{a}$£¬$\overrightarrow{b}$£¬$\overrightarrow{c}$ÔÚÕý·½ÐÎÍøÂçÖеÄλÖÃÈçͼËùʾ£¬Èô$\overrightarrow{c}$=¦Ë$\overrightarrow{a}$+¦Ì$\overrightarrow{b}$£¨¦Ë£¬¦Ì¡ÊR£©£¬Ôò$\frac{¦Ë}{¦Ì}$=£¨¡¡¡¡£©
A£®-8B£®-4C£®4D£®2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÂÃÓÎÌåÑéʦСÀîÊÜijÂÃÓÎÍøÕ¾ÑûÔ¼£¬¾ö¶¨¶Ô¼×¡¢ÒÒ¡¢±û¡¢¶¡ÕâËĸö¾°Çø½øÐÐÌåÑéʽÂÃÓΣ¬Èô¼×¾°Çø²»ÄÜ×îÏÈÂÃÓΣ¬ÒÒ¾°ÇøºÍ¶¡¾°Çø²»ÄÜ×îºóÂÃÓΣ¬ÔòСÀîÂÃÓεķ½·¨ÊýΪ£¨¡¡¡¡£©
A£®24B£®18C£®16D£®10

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®¡÷ABCÖУ¬½ÇA£¬B£¬CËù¶Ô±ß·Ö±ðΪa£¬b£¬c£¬¡÷ABCµÄÃæ»ýΪS£¬Èô4$\sqrt{3}$S=£¨a+b£©2-c2£¬Ôò½ÇCµÄ´óСΪ$\frac{¦Ð}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®ÉèÊýÁÐ{an}Âú×ãan=$\frac{1}{\sqrt{4n-3}}$£¨n¡ÊN*£©£¬bn=a2n+1+a2n+2+¡­+a22n+1£¬Ôòbn-bn+1=$\frac{1}{4n+1}$-£¨$\frac{1}{8n+5}$+$\frac{1}{8n+9}$£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÒÑÖªÊýÁÐ{an}ÖУ¬a1=1£¬an+1=an+n£®
£¨1£©Ð´³öÊýÁÐ{an}µÄǰ5Ï
£¨2£©²ÂÏëÊýÁÐ{an}µÄͨÏʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®5ÈË´Ó×óÖÁÓÒÅųÉÒ»ÐУ¬¼×ÅÅÔÚÖмäµÄ²»Í¬·½·¨ÖÖÊýÓУ¨¡¡¡¡£©
A£®12B£®24C£®36D£®120

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÉèÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬ÒÑÖªa1=1£¬Sn-Sn-1=$\sqrt{{S}_{n}}$+$\sqrt{{S}_{n-1}}$£¨n¡Ý2£©£¬Çóan£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®Éèa£¬b£¬c¡ÊR£¬¶ÔÈÎÒâÂú×ã|x|¡Ü1µÄʵÊýx£¬¶¼ÓÐ|ax2+bx+c|¡Ü1£¬Ôò|a|+|b|+|c|µÄ×î´ó¿ÉÄÜֵΪ3£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸