精英家教网 > 高中数学 > 题目详情
4.△ABC中,角A,B,C所对边分别为a,b,c,△ABC的面积为S,若4$\sqrt{3}$S=(a+b)2-c2,则角C的大小为$\frac{π}{3}$.

分析 由题意和三角形的面积公式以及余弦定理可得$\sqrt{3}$sinC=cosC+1,再由和差角的三角函数公式和三角形内角的范围可得.

解答 解:∵△ABC中4$\sqrt{3}$S=(a+b)2-c2
∴4$\sqrt{3}$×$\frac{1}{2}$absinC=a2+b2-c2+2ab,
∴由余弦定理可得2$\sqrt{3}$absinC=2abcosC+2ab,
约掉2ab可得$\sqrt{3}$sinC=cosC+1,即$\sqrt{3}$sinC-cosC=1,
∴2sin(C-$\frac{π}{6}$)=1,故sin(C-$\frac{π}{6}$)=$\frac{1}{2}$,
∴C-$\frac{π}{6}$=$\frac{π}{6}$或C-$\frac{π}{6}$=$\frac{5π}{6}$,解得C=$\frac{π}{3}$或C=π(舍去)
故答案为:$\frac{π}{3}$.

点评 本题考查正余弦定理解三角形以及三角形的面积公式,涉及和差角的三角函数公式,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.平行六面体ABCD-A1B1C1D1的所有棱长都相等,且∠A1AB=∠A1AD=∠BAD=60°,则对角面B1BDD1是正方形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知二次函数f(x),若f(x)<0时的解集为{x|-1<x<4},且f(6)=28.
(1)求函数f(x)的解析式;
(2)若函数$g(x)=\frac{f(x-m)}{x}(m>1)$在区间$[8\sqrt{3},16]$上是单调递增函数,试求函数g(x)在该区间上的最大值的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知tanα=2,则tan(α-$\frac{π}{6}$)=(  )
A.8-5$\sqrt{3}$B.6-5$\sqrt{3}$C.5$\sqrt{3}$-8D.5$\sqrt{3}$-6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若α是第二象限角,且sinα=$\frac{3}{5}$,则cosα=(  )
A.$\frac{3}{4}$B.-$\frac{4}{3}$C.-$\frac{4}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.若cosθ=-$\frac{4}{5}$,θ∈($\frac{π}{2}$,π),求cos(2θ+$\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设k≠0,若函数y1=(x-k)2+2k和y2=-(x+k)2-2k的图象与y轴依次交于A,B两点,函数y1,y2的图象的顶点分别为C,D.
(1)当k=1时,请在同一直角坐标系中,分别画出函数y1,y2的草图,并根据图形,写出y1,y2两图象的位置关系;
(2)当-2<k<0时,求线段AB长的取值范围;
(3)A,B,C,D四点构成的图形是否为平行四边形?若是平行四边形,则是否构成菱形或矩形?若能构成菱形或矩形,请直接写出k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,△ABC中,D为AC中点,E为BD中点,设$\overrightarrow{BC}$=$\overrightarrow{a}$,$\overrightarrow{BA}$=$\overrightarrow{b}$.
(1)试用$\overrightarrow{a}$,$\overrightarrow{b}$表示向量$\overrightarrow{AC}$,$\overrightarrow{AE}$;
(2)若|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=3,且($\frac{4}{3}$$\overrightarrow{b}$-$\overrightarrow{a}$)$⊥\overrightarrow{a}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若存在x0∈[-1,1]使得不等式|4${\;}^{{x}_{0}}$-a•2${\;}^{{x}_{0}}$+1|≤2${\;}^{{x}_{0}+1}$成立,则实数a的取值范围是[0,$\frac{9}{2}$].

查看答案和解析>>

同步练习册答案