精英家教网 > 高中数学 > 题目详情
4.设a,b,c∈R,对任意满足|x|≤1的实数x,都有|ax2+bx+c|≤1,则|a|+|b|+|c|的最大可能值为3.

分析 由题意可取x=0,确定c的范围,可取c=-1,b=0,结合二次函数的最值,即可得到所求最大值.

解答 解:任意满足|x|≤1的实数x,都有|ax2+bx+c|≤1,
若x=0,则|c|≤1,
可取c=-1,b=0,可得|ax2-1|≤1,
由于0≤x2≤1,可得a最大取2,
可得|a|+|b|+|c|≤3,
即有|a|+|b|+|c|的最大可能值为3.
故答案为:3.

点评 本题考查绝对值不等式恒成立问题的解法,注意运用特殊值法,以及二次函数的性质,考查推理能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.设k≠0,若函数y1=(x-k)2+2k和y2=-(x+k)2-2k的图象与y轴依次交于A,B两点,函数y1,y2的图象的顶点分别为C,D.
(1)当k=1时,请在同一直角坐标系中,分别画出函数y1,y2的草图,并根据图形,写出y1,y2两图象的位置关系;
(2)当-2<k<0时,求线段AB长的取值范围;
(3)A,B,C,D四点构成的图形是否为平行四边形?若是平行四边形,则是否构成菱形或矩形?若能构成菱形或矩形,请直接写出k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在△ABC中,若sin(B+C)=2sinBcosC,那么这个三形一定是(  )
A.锐角三角形B.钝角三角形C.直角三角形D.等腰三角形

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若存在x0∈[-1,1]使得不等式|4${\;}^{{x}_{0}}$-a•2${\;}^{{x}_{0}}$+1|≤2${\;}^{{x}_{0}+1}$成立,则实数a的取值范围是[0,$\frac{9}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设全集U=R,P={x|(x+1)(x-2)<0},Q={x|x2-3x>0},则图中的阴影部分表示的集合为(  )
A.{x|-1<x≤3}B.{x|-1<x<0}C.{x|-1<x≤0或2<x≤3}D.{x|0≤x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=[2sin(x+$\frac{2π}{3}$)+sinx]cosx-$\sqrt{3}$sin2x.
(1)求函数f(x)的最小正周期;
(2)若实数t∈[0,$\frac{5π}{12}$],求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在△ABC,角A、B、C所对的边分别为a、b、c,已知cosB+(cosA-2sinA)cosC=0.
(Ⅰ)求cosC的值;
(Ⅱ)若a=$\sqrt{5}$,AB边上的中线CM=$\sqrt{2}$,求sinB及△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若集合M={x|$\frac{1}{x}$<2},集合N={x|-1<x<2},则M∩N等于(  )
A.{x|$\frac{1}{2}$<x<2}B.{x|-1<x<0或$\frac{1}{2}$<x<2}C.{x|-1<x<$\frac{1}{2}$}D.{x|0<x<$\frac{1}{2}$或1<x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.晚自习结束后,几位同学在一起讨论问题,小李看到小杨把三角等式cos(α+β)=cosαcosβ-sinαsinβ错写成了cos(α+β)=cosα-sinβ.爱思考的他给大家提出了以下几个问题:
(1)等式cos(α+β)=cosα-sinβ一定成立吗?请说明理由;
(2)等式cos(α+β)=cosα-sinβ一定不成立吗?请说明理由;
(3)等式cos(α+β)=cosα-sinβ何时成立?请说明理由.
经过一番热烈的讨论后,熄灯前几位同学得出了一致的结论,结束了讨论,现在,请你也来试一试吧!

查看答案和解析>>

同步练习册答案