精英家教网 > 高中数学 > 题目详情
8.5人从左至右排成一行,甲排在中间的不同方法种数有(  )
A.12B.24C.36D.120

分析 根据题意,分2步进行分析:①分析甲,甲必须排在中间,有1种情况,②分析其他4个人,将剩余的4个人排在除中间之外的4个位置,由排列数公式计算可得其排法数目;由分步计数原理计算可得答案.

解答 解:根据题意,分2步进行分析:
①甲必须排在中间,有1种情况,
②将剩余的4个人排在除中间之外的4个位置,有A44=24种排法;
则甲排在中间的不同方法种数有1×24=24种;
故选:B.

点评 本题考查排列、组合的运用,涉及分步计数原理的应用,注意要先满足甲排在中间的要求.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知z=2+i,(i是虚数单位),z的共轭复数是$\overline z$,则复数$\frac{\overline z}{i}$=(  )
A.-1-2iB.1-2iC.-1+2iD.1+2i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若α是第二象限角,且sinα=$\frac{3}{5}$,则cosα=(  )
A.$\frac{3}{4}$B.-$\frac{4}{3}$C.-$\frac{4}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设k≠0,若函数y1=(x-k)2+2k和y2=-(x+k)2-2k的图象与y轴依次交于A,B两点,函数y1,y2的图象的顶点分别为C,D.
(1)当k=1时,请在同一直角坐标系中,分别画出函数y1,y2的草图,并根据图形,写出y1,y2两图象的位置关系;
(2)当-2<k<0时,求线段AB长的取值范围;
(3)A,B,C,D四点构成的图形是否为平行四边形?若是平行四边形,则是否构成菱形或矩形?若能构成菱形或矩形,请直接写出k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数y=lg(x2-4)+$\sqrt{{x}^{2}+6x}$的定义域是(  )
A.(-∞,-2)∪[0,+∞)B.(-∞,-6]∪(2,+∞)C.(-∞,-2]∪[0,+∞)D.(-∞,-6)∪[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,△ABC中,D为AC中点,E为BD中点,设$\overrightarrow{BC}$=$\overrightarrow{a}$,$\overrightarrow{BA}$=$\overrightarrow{b}$.
(1)试用$\overrightarrow{a}$,$\overrightarrow{b}$表示向量$\overrightarrow{AC}$,$\overrightarrow{AE}$;
(2)若|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=3,且($\frac{4}{3}$$\overrightarrow{b}$-$\overrightarrow{a}$)$⊥\overrightarrow{a}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-2,5),$\overrightarrow{c}$=(x,y),若$\overrightarrow{a}$∥($\overrightarrow{b}$+$\overrightarrow{c}$),$\overrightarrow{b}$⊥$\overrightarrow{c}$,则x+y=$\frac{63}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在△ABC中,若sin(B+C)=2sinBcosC,那么这个三形一定是(  )
A.锐角三角形B.钝角三角形C.直角三角形D.等腰三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在△ABC,角A、B、C所对的边分别为a、b、c,已知cosB+(cosA-2sinA)cosC=0.
(Ⅰ)求cosC的值;
(Ⅱ)若a=$\sqrt{5}$,AB边上的中线CM=$\sqrt{2}$,求sinB及△ABC的面积.

查看答案和解析>>

同步练习册答案