精英家教网 > 高中数学 > 题目详情
20.已知f(x)=$\left\{\begin{array}{l}{\frac{1}{2}x-1,x≥0}\\{3x+2,x<0}\end{array}\right.$,若f(a)>a,则a的取值范围是(  )
A.(-∞,-2)B.(-1,+∞)C.(-∞,-2)∪(1,+∞)D.(-1,0)

分析 分a≥0与a<0讨论,从而解不等式即可.

解答 解:当a≥0时,f(a)=$\frac{1}{2}$a-1>a,
故a<-2;
当a<0时,f(a)=3a+2>a,
故a>-1;
故-1<a<0.
故选:D.

点评 本题考查了分段函数的应用及不等式的解法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知f(x)=2sin(2x+$\frac{π}{3}$).
(1)求f(x)的最小正周期;
(2)用五点作图法作出f(x)在一个周期的简图.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.集合A={(x,y)|mx2+mx-y+2=0},集合B={(x,y)|x-y+1=0},
(1)A∩B=∅,求实数m的取值范围;
(2)A∩B为单元素集合,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若集合A={x|ax2-x+b=0}={-1},则实数对(a,b)组合的集合为{(-$\frac{1}{2}$,-$\frac{1}{2}$)}或{(0,-1)}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.不等式|ax+2|<8的解集为{x|-3<x<5},求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求证:$\frac{ln2}{2}$+$\frac{ln3}{3}$+$\frac{ln4}{4}$+…+$\frac{lnn}{n}$<$\frac{{n}^{2}}{2(n+1)}$(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知y=f(x)(x∈D)(D为此函数的定义域)同时满足下列两个条件:①f(x)在D上单调递增或单调递减;②存在区间[a,b]⊆D,使得函数f(x)在区间[a,b]的值域为[a,b],那么称y=f(x),x∈D为闭函数,若y=k+2$\sqrt{x}$(k<0)是闭函数,则实数k的取值范围是(-1,0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.曲线y=2sinx在点(π,0)处的切线的斜率为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数y=f(x)是定义在R上的偶函数,且f(x+1)=f(x-1),当x∈[0,1]时,f(x)=2x-1,则函数g(x)=f(x)-ln$\frac{x}{2}$的零点个数为(  )
A.3B.4C.5D.6

查看答案和解析>>

同步练习册答案