分析 (1)根据随机变量X服从[0,0.2]上的均匀分布,写出X的概率密度函数fX(x);
(2)由随机变量X、Y的概率密度函数,且X与Y相互独立,写出二维随机变量(X,Y)的概率密度函数f(X,Y)=fX(x)•fY(y).
解答 解:(1)随机变量X服从[0,0.2]上的均匀分布,
则X的概率密度为
fX(x)=$\left\{\begin{array}{l}{5,0<x<0.2}\\{0,其它}\end{array}\right.$;
(2)由随机变量Y的概率密度为
fY(y)=$\left\{\begin{array}{l}{5{e}^{-5y},y≥0}\\{0,其他}\end{array}\right.$,且X与Y相互独立;
则二维随机变量(X,Y)的概率密度为
f(X,Y)=fX(x)•fY(y)
=$\left\{\begin{array}{l}{2{5e}^{-5y},0<x<0.2,y≥0}\\{0,其它}\end{array}\right.$.
点评 本题考查了二维变量的概率密度函数的定义与应用问题,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5}{3}$ | B. | $\frac{\sqrt{41}}{4}$ | C. | $\frac{5}{4}$ | D. | $\frac{\sqrt{41}}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 8π | B. | 16π | C. | 24π | D. | 32π |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | arctan(-1)=$\frac{3π}{4}$ | B. | arctan($\frac{1}{2}$)=$\frac{π}{6}$ | C. | arcsin(-$\frac{1}{2}$)=-$\frac{π}{6}$ | D. | arccos(-$\frac{1}{2}$)=-$\frac{π}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com