精英家教网 > 高中数学 > 题目详情
1.有关行列式展开:
(1)分别按第一行以及第一列展开行列式$|\begin{array}{l}{2}&{1}&{3}\\{0}&{4}&{2}\\{0}&{1}&{1}\end{array}|$;
(2)试将展开式a$|\begin{array}{l}{1}&{2}\\{0}&{4}\end{array}|$+b$|\begin{array}{l}{-1}&{3}\\{0}&{4}\end{array}|$+c$|\begin{array}{l}{-1}&{3}\\{1}&{2}\end{array}|$写成一个三阶行列式.

分析 (1)利用行列式展开的方法,即可得出结论;
(2)根据行列式的展开规律,将展开式还原.

解答 解:(1)按第一行展开:2×$|\begin{array}{l}{4}&{2}\\{1}&{1}\end{array}|$-1×$|\begin{array}{l}{0}&{2}\\{0}&{1}\end{array}|$+3×$|\begin{array}{l}{0}&{4}\\{0}&{1}\end{array}|$,
按第一列展开:2×$|\begin{array}{l}{4}&{2}\\{1}&{1}\end{array}|$-0$|\begin{array}{l}{1}&{3}\\{1}&{1}\end{array}|$+0×$|\begin{array}{l}{1}&{3}\\{4}&{2}\end{array}|$;
(2)$|\begin{array}{l}{a}&{-1}&{3}\\{-b}&{1}&{2}\\{c}&{0}&{4}\end{array}|$按第一列展开可得:a$|\begin{array}{l}{1}&{2}\\{0}&{4}\end{array}|$+b$|\begin{array}{l}{-1}&{3}\\{0}&{4}\end{array}|$+c$|\begin{array}{l}{-1}&{3}\\{1}&{2}\end{array}|$,
a$|\begin{array}{l}{1}&{2}\\{0}&{4}\end{array}|$+b$|\begin{array}{l}{-1}&{3}\\{0}&{4}\end{array}|$+c$|\begin{array}{l}{-1}&{3}\\{1}&{2}\end{array}|$写成一个三阶行列式$|\begin{array}{l}{a}&{-1}&{3}\\{-b}&{1}&{2}\\{c}&{0}&{4}\end{array}|$.

点评 本题考查行列式展开的方法,考查学生的计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.数列1,3,6,10,x,21,…中的x等于(  )
A.17B.16C.15D.14

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.解关于x的不等式:mx2-(m-2)x-2>0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知α,β是两个不同的平面,m,n是两条不同的直线,给出下列命题:
①若m⊥α,m?β,则α⊥β;
②若m?α,n?α,m∥β,n∥β,则α∥β;
③若α∩β=m,n∥m,且n?α,n?β,则n∥α且n∥β
其中正确命题的序号是①③.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=Asin(x+$\frac{π}{4}$),且f($\frac{5}{12}$π)=$\frac{3}{2}$,则A的值为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知向量$\overrightarrow{a}$=(sinx,1),$\overrightarrow{b}$=(1,cosx),x∈R,设f(x)=$\overrightarrow{a}$$•\overrightarrow{b}$
(1)求函数f(x)的对称轴方程;
(2)若f(θ+$\frac{π}{4}$)=$\frac{\sqrt{2}}{3}$,θ∈(0,$\frac{π}{2}$),求f(θ-$\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设随机变量X服从[0,0.2]上的均匀分布,随机变量Y的概率密度为fY(y)=$\left\{\begin{array}{l}{5{e}^{-5y},y≥0}\\{0,其他}\end{array}\right.$,且X与Y相互独立.
求:(1)X的概率密度;
(2)(X,Y)的概率密度.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在平面直角坐标系xoy中,曲线C1的参数方程为$\left\{{\begin{array}{l}{x=4cosθ}\\{y=3sinθ}\end{array}}\right.$(θ为参数),以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,得曲线C2的极坐标方程为ρ+6sinθ-8cosθ=0(ρ≥0)
(Ⅰ)求曲线C1的普通方程和曲线C2的直角坐标方程;
(Ⅱ)直线l:$\left\{{\begin{array}{l}{x=2+t}\\{y=-\frac{3}{2}+λ\;t}\end{array}}\right.$(t为参数)过曲线C1与y轴负半轴的交点,求与直线l平行且与曲线C2相切的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在同一坐标系中,将曲线y=$\frac{1}{2}$sin3x变为曲线y'=sinx′的伸缩变换是(  )
A.$\left\{{\begin{array}{l}{x=3x'}\\{y=\frac{1}{2}y'}\end{array}}\right.$B.$\left\{{\begin{array}{l}{x'=3x}\\{y'=\frac{1}{2}y}\end{array}}\right.$C.$\left\{{\begin{array}{l}{x=3x'}\\{y=2y'}\end{array}}\right.$D.$\left\{{\begin{array}{l}{x'=3x}\\{y'=2y}\end{array}}\right.$

查看答案和解析>>

同步练习册答案