【题目】已知
是定义在
上的偶函数,当
时,
.
(1)用分段函数形式写出
的解析式;
(2)写出
的单调区间;
(3)求出函数的最值.
科目:高中数学 来源: 题型:
【题目】某地有两个国家AAAA级景区—甲景区和乙景区.相关部门统计了这两个景区2019年1月至6月的客流量(单位:百人),得到如图所示的茎叶图.关于2019年1月至6月这两个景区的客流量,下列结论正确的是( )
![]()
A.甲景区客流量的中位数为13000
B.乙景区客流量的中位数为13000
C.甲景区客流量的平均值比乙景区客流量的平均值小
D.甲景区客流量的极差比乙景区客流量的极差大
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,河的两岸分别有生活小区
和
,其中
,
三点共线,
与
的延长线交于点
,测得
,
,
,
,
,若以
所在直线分别为
轴建立平面直角坐标系
则河岸
可看成是曲线
(其中
是常数)的一部分,河岸
可看成是直线
(其中
为常数)的一部分.
![]()
(1)求
的值.
(2)现准备建一座桥
,其中
分别在
上,且
,
的横坐标为
.写出桥
的长
关于
的函数关系式
,并标明定义域;当
为何值时,
取到最小值?最小值是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的左、右焦点分别为
,
,过
且垂直于
轴的焦点弦的弦长为
,过
的直线
交椭圆
于
,
两点,且
的周长为
.
(1)求椭圆
的方程;
(2)已知直线
,
互相垂直,直线
过
且与椭圆
交于点
,
两点,直线
过
且与椭圆
交于
,
两点.求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我们在求高次方程或超越方程的近似解时常用二分法求解,在实际生活中还有三分法.比如借助天平鉴别假币.有三枚形状大小完全相同的硬币,其中有一假币(质量较轻),把两枚硬币放在天平的两端,若天平平衡,则剩余一枚为假币,若天平不平衡,较轻的一端放的硬币为假币.现有 27 枚这样的硬币,其中有一枚是假币(质量较轻),如果只有一台天平,则一定能找到这枚假币所需要使用天平的最少次数为( )
A.2B.3C.4D.5
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在新中国成立70周年国庆阅兵庆典中,众多群众在脸上贴着一颗红心,以此表达对祖国的热爱之情,在数学中,有多种方程都可以表示心型曲线,其中有著名的笛卡尔心型曲线,如图,在直角坐标系中,以原点O为极点,x轴正半轴为极轴建立极坐标系.图中的曲线就是笛卡尔心型曲线,其极坐标方程为
(
),M为该曲线上的任意一点.
![]()
(1)当
时,求M点的极坐标;
(2)将射线OM绕原点O逆时针旋转
与该曲线相交于点N,求
的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com