精英家教网 > 高中数学 > 题目详情
设函数f(x)=是定义在(﹣1,1)上的奇函数,且 f()=
(1)确定函数f(x)的解析式
(2)用定义证明f(x)在(﹣1,1)上是增函数
(3)解不等式f (t﹣1)+f(t)<0.
解:(1)由已知得f(﹣x)=﹣f(x),
∴﹣ax+=﹣ax﹣,解得b=0,
则f(x)=ax﹣
又f()=
=,解得a=1.
∴f(x)=
(2)设﹣1<x1<x2<1,
则f(x2)﹣f(x1)==
显然f(x2)﹣f(x1)>0,
∴f(x)在(﹣1,1)上单调递增.
(3)原式化为f(t﹣1)<﹣f(t),又f(x)是奇函数,
∴f(t﹣1)<f(﹣t),由已知得:
﹣1<t﹣1<1,
﹣1<﹣t<1,
t﹣1<﹣t,
解得t∈(0,).
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x2+(a-3)x+a2-3a(a为常数).
(1)如果对任意x∈[1,2],f(x)>a2恒成立,求实数a的取值范围;
(2)设实数p,q,r满足:p,q,r中的某一个数恰好等于a,且另两个恰为方程f(x)=0的两实根,判断①p+q+r,②p2+q2+r2,③p3+q3+r3是否为定值?若是定值请求出:若不是定值,请把不是定值的表示为函数g(a),并求g(a)的最小值;
(3)对于(2)中的g(a),设H(a)=-
16
[g(a)-27]
,数列{an}满足an+1=H(an)(n∈N*),且a1∈(0,1),试判断an+1与an的大小,并证明之.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3+
a-3
2
x2+(a2-3a)x-2a

(I)如果对任意x∈[1,2],f′(x)>a2恒成立,求实数a的取值范围;
(II)设函数f(x)的两个极值点分别为x1,x2判断下列三个代数式:①x1+x2+a,②
x
2
1
+
x
2
2
+a2
,③
x
3
1
+
x
3
2
+a3

中有几个为定值?并且是定值请求出;若不是定值,请把不是定值的表示为函数g(a),并求出g(a)的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=
1
3
x3+
a-3
2
x2+(a2-3a)x-2a

(I)如果对任意x∈[1,2],f′(x)>a2恒成立,求实数a的取值范围;
(II)设函数f(x)的两个极值点分别为x1,x2判断下列三个代数式:①x1+x2+a,②
x21
+
x22
+a2
,③
x31
+
x32
+a3

中有几个为定值?并且是定值请求出;若不是定值,请把不是定值的表示为函数g(a),并求出g(a)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax+(a, b∈Z),曲线y=f(x)在点(2,f(2))处的切线方程为y=3.

(Ⅰ)求f(x)的解析式:

(Ⅱ)证明:函数y=f(x)的图像是一个中心对称图形,并求其对称中心;

(Ⅲ)证明:曲线y=f(x)上任一点的切线与直线x=1和直线y=x所围三角形的面积为定值,并求出此定值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年河北省衡水中学高三(上)第一次调研数学试卷(理科)(解析版) 题型:解答题

已知函数
(I)如果对任意x∈[1,2],f′(x)>a2恒成立,求实数a的取值范围;
(II)设函数f(x)的两个极值点分别为x1,x2判断下列三个代数式:①x1+x2+a,②,③
中有几个为定值?并且是定值请求出;若不是定值,请把不是定值的表示为函数g(a),并求出g(a)的最小值.

查看答案和解析>>

同步练习册答案