1£®ÒÑÖªOÎª×ø±êÔ­µã£¬ÍÖÔ²C£º$\frac{x^2}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1¡¢F2£¬É϶¥µãΪP£¬ÓÒ¶¥µãΪQ£¬ÒÔ
F1¡¢F2Ϊֱ¾¶µÄÔ²OÓëÍÖÔ²CÄÚÇУ¬Ö±ÏßPQÓëÔ²OÏཻµÃµ½µÄÏÒ³¤Îª$\frac{2\sqrt{3}}{3}$£®
£¨¢ñ£©ÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨¢ò£©ÈôÖ±ÏßlÓëÒÔF1¡¢F2Ϊֱ¾¶µÄÔ²OÏàÇУ¬²¢ÇÒÓëÍÖÔ²C½»ÓÚ²»Í¬µÄÁ½µãA¡¢B£¬Çó¡÷AOBµÄÃæ»ýµÄ×î´óÖµ£®

·ÖÎö £¨¢ñ£©ÓÉÌâÒâ¿ÉÖª£ºP£¨0£¬b£©£¬Q£¨a£¬0£©£¬ÔòÖ±ÏßPQµÄ·½³Ì£ºay+bx-ab=0£¬ÔòOµ½Ö±ÏßPQµÄ¾àÀëd=$\frac{Ø­-abØ­}{\sqrt{{a}^{2}+{b}^{2}}}$=$\frac{ab}{\sqrt{{a}^{2}+{b}^{2}}}$£¬ÓÉÒÔF1¡¢F2Ϊֱ¾¶µÄÔ²OÓëÍÖÔ²CÄÚÇУ¬Ôòb=c£¬ÓÉ´ËÄÜÇó³öÍÖÔ²µÄ±ê×¼·½³Ì£®
£¨¢ò£©ÌÖÂÛÖ±ÏßABµÄбÂʲ»´æÔÚ£¬ÇóµÃ¡÷ABOµÄÃæ»ý£¬Èô´æÔÚÉèÖ±ÏßAB£ºy=kx+m£¬A£¨x1£¬y1£©¡¢B£¨x2£¬y2£©£¬ÓÉÔ²OÓëÖ±ÏßlÏàÇУ¬µÃm2=k2+1£®ÓÉ$\left\{\begin{array}{l}{y=kx+m}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.$£¬µÃ£¨1+2k2£©x2+4kmx+2m2-2=0£¬ÓÉ´ËÀûÓøùµÄÅбðʽ¡¢Î¤´ï¶¨Àí¡¢ÏÒ³¤¹«Ê½£¬½áºÏÒÑÖªÌõ¼þÄÜÇó³ö¡÷AOBµÄÃæ»ýµÄ×î´óÖµ£®

½â´ð ½â£º£¨¢ñ£©ÓÉÌâÒâ¿ÉÖª£ºP£¨0£¬b£©£¬Q£¨a£¬0£©£¬
ÔòÖ±ÏßPQµÄ·½³Ì£ºay+bx-ab=0£¬
ÔòOµ½Ö±ÏßPQµÄ¾àÀëd=$\frac{Ø­-abØ­}{\sqrt{{a}^{2}+{b}^{2}}}$=$\frac{ab}{\sqrt{{a}^{2}+{b}^{2}}}$£¬
ÓÉÒÔF1¡¢F2Ϊֱ¾¶µÄÔ²OÓëÍÖÔ²CÄÚÇУ¬Ôòb=c£¬
ÔÚ¡÷ODPÖУ¬¸ù¾Ý¹´¹É¶¨Àí¿ÉÖª£º
£¨$\frac{ab}{\sqrt{{a}^{2}+{b}^{2}}}$£©2+£¨$\frac{\sqrt{3}}{3}$£©2=b2£¬¢Ù
ÓÉa2=b2+c2=2b2£¬¢Ú
ÓÉ¢Ù¢Ú½âµÃ£ºb2=1£¬a2=2£¬
¡àÍÖÔ²µÄ±ê×¼·½³ÌΪ£º$\frac{{x}^{2}}{2}+{y}^{2}=1$£®
£¨¢ò£©µ±Ö±ÏßABµÄбÂʲ»´æÔÚʱ£¬AB¹ýÍÖÔ²µÄ½¹µã£¬
Áîx=1´úÈëÍÖÔ²·½³Ì¿ÉµÃy=¡À$\frac{\sqrt{2}}{2}$£¬
¿ÉµÃ|AB|=$\sqrt{2}$£¬S¡÷ABO=$\frac{\sqrt{2}}{2}$£»
µ±Ö±ÏßABµÄбÂÊ´æÔÚʱ£¬ÉèÖ±ÏßAB£ºy=kx+m£¬A£¨x1£¬y1£©¡¢
B£¨x2£¬y2£©£¬
¡ßÔ²OÓëÖ±ÏßlÏàÇУ¬
¡ß$\frac{Ø­mØ­}{\sqrt{1+{k}^{2}}}$=1£¬
¡àm2=k2+1£®
ÓÉ$\left\{\begin{array}{l}{y=kx+m}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.$£¬ÏûÈ¥y£¬µÃ£¨1+2k2£©x2+4kmx+2m2-2=0£¬
¡ßÖ±ÏßlÓëÍÖÔ²½»ÓÚÁ½¸ö²»Í¬µÄµã£¬
¡à¡÷=£¨4km£©2-4£¨1+2k2£©£¨2m2-2£©£¾0£¬¼´m2-2k2£¼1£¬
¡àk2£¾0£®
ÓÉΤ´ï¶¨Àí¿ÉÖª£ºx1+x2=-$\frac{4km}{1+2{k}^{2}}$£¬x1x2=$\frac{2{m}^{2}-2}{1+2{k}^{2}}$£¬
ÔòØ­ABØ­=$\sqrt{1+{k}^{2}}$•$\sqrt{£¨{x}_{1}+{x}_{2}£©^{2}-4{x}_{1}{x}_{2}}$
=$\sqrt{1+{k}^{2}}$•$\sqrt{£¨-\frac{4km}{1+2{k}^{2}}£©^{2}-4¡Á\frac{2{m}^{2}-2}{1+2{k}^{2}}}$=$\sqrt{1+{k}^{2}}$•$\frac{2\sqrt{2}\sqrt{{k}^{2}}}{1+2{k}^{2}}$£¬
¡÷AOBµÄÃæ»ýS=$\frac{1}{2}$•Ø­ABØ­•d=$\frac{\sqrt{2}\sqrt{{k}^{2}£¨1+{k}^{2}£©}}{1+2{k}^{2}}$£¬
Áî1+2k2=t£¨t£¾1£©£¬¿ÉµÃk2=$\frac{t-1}{2}$£¬ÔòS=$\frac{\sqrt{2}\sqrt{\frac{t-1}{2}•\frac{t+1}{2}}}{t}$
=$\frac{\sqrt{2}}{2}$•$\sqrt{\frac{{t}^{2}-1}{{t}^{2}}}$=$\frac{\sqrt{2}}{2}$•$\sqrt{1-\frac{1}{{t}^{2}}}$£¼$\frac{\sqrt{2}}{2}$£®
×ÛÉϿɵ㬡÷AOBµÄÃæ»ýµÄ×î´óֵΪ$\frac{\sqrt{2}}{2}$£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÍÖÔ²µÄ¸ÅÄîºÍÐÔÖÊ£¬Ö±ÏߺÍÍÖÔ²µÄλÖùØÏµ£¬Ô²µÄÐÔÖʵÈ֪ʶ£¬ÒâÔÚ¿¼²éת»¯ºÍ»¯¹é˼Ï룬ÊýÐνáºÏ˼ÏëºÍѧÉúµÄÔËËãÇó½âÄÜÁ¦£¬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®Èý½ÇÐÎABCÖУ¬C=90¡ã£¬A=30¡ã£¬¹ýC×÷ÉäÏßl½»Ïß¶ÎABÓÚµãD£¬ÔòS¡÷ABC£¾2S¡÷ACDµÄ¸ÅÂÊÊÇ£¨¡¡¡¡£©
A£®$\frac{1}{3}$B£®$\frac{1}{2}$C£®$\frac{2}{3}$D£®$\frac{3}{4}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÉèÊýÁÐ{an}µÄǰnÏîºÍSn=2an-a1£¬ÇÒa1£¬a2+1£¬a3³ÉµÈ²îÊýÁУ®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»      
£¨2£©ÇóÊýÁÐ$\{\frac{1}{a_n}-n\}$µÄǰnÏîºÍTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÒÑÖªÃüÌâp£º´æÔÚÏòÁ¿$\overrightarrow{a}$£¬$\overrightarrow{b}$£¬Ê¹µÃ$\overrightarrow{a}$•$\overrightarrow{b}$=|$\overrightarrow{a}$|•|$\overrightarrow{b}$|£¬ÃüÌâq£º¶ÔÈÎÒâµÄÏòÁ¿$\overrightarrow{a}$£¬$\overrightarrow{b}$£¬$\overrightarrow{c}$£¬Èô$\overrightarrow{a}$•$\overrightarrow{b}$=$\overrightarrow{a}$•$\overrightarrow{c}$£¬Ôò$\overrightarrow{b}$=$\overrightarrow{c}$£®ÔòÏÂÁÐÅжÏÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®ÃüÌâp¡ÅqÊǼÙÃüÌâB£®ÃüÌâp¡ÄqÊÇÕæÃüÌâ
C£®ÃüÌâp¡Å£¨©Vq£©ÊǼÙÃüÌâD£®ÃüÌâp¡Ä£¨©Vq£©ÊÇÕæÃüÌâ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÏÂÁÐ4¸öÃüÌâÖÐÕýÈ·ÃüÌâµÄ¸öÊýÊÇ
£¨1£©¶ÔÓÚÃüÌâp£º?x0¡ÊR£¬Ê¹µÃx02-1¡Ü0£¬Ôò©Vp£º?x¡ÊR¶¼ÓÐx2-1£¾0
£¨2£©ÒÑÖªX¡«N£¨2£¬¦Ò2£©£¬P£¨x£¾2£©=0.5
£¨3£©ÒÑÖª»Ø¹éÖ±ÏßµÄбÂʵĹÀ¼ÆÖµÊÇ2£¬Ñù±¾µãµÄÖÐÐÄΪ£¨4£¬5£©£¬Ôò»Ø¹éÖ±Ïß·½³ÌΪ$\stackrel{¡Ä}{y}$=2x-3
£¨4£©¡°x¡Ý1¡±ÊÇ¡°x+$\frac{1}{x}$¡Ý2¡±µÄ³ä·Ö²»±ØÒªÌõ¼þ£®£¨¡¡¡¡£©
A£®1B£®2C£®3D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÒÑÖªº¯Êýf£¨x£©=lnx+ax2
£¨1£©¼Çm£¨x£©=f¡ä£¨x£©£¬Èôm¡ä£¨1£©=3£¬ÇóʵÊýaµÄÖµ£»
£¨2£©ÒÑÖªº¯Êýg£¨x£©=f£¨x£©-ax2+ax£¬Èôg£¨x£©ÔÚ£¨0£¬+¡Þ£©Éϵ¥µ÷µÝÔö£¬ÇóʵÊýaµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®ÖÀÒ»¸ö÷»×ÓµÄÊÔÑ飬ʼþA±íʾ¡°Ð¡ÓÚ5µÄżÊýµã³öÏÖ¡±£¬Ê¼þB±íʾ¡°Ð¡ÓÚ4µÄµãÊý³öÏÖ¡±£¬ÔòÒ»´ÎÊÔÑéÖУ¬Ê¼þA+$\overline{B}$·¢ÉúµÄ¸ÅÂÊΪ£¨¡¡¡¡£©
A£®$\frac{1}{3}$B£®$\frac{1}{2}$C£®$\frac{2}{3}$D£®$\frac{5}{6}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®Èô¦È¡Ê[0£¬¦Ð]£¬Ôò$sin£¨{¦È+\frac{¦Ð}{3}}£©£¾\frac{1}{2}$³ÉÁ¢µÄ¸ÅÂÊΪ$\frac{1}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®ÊýÁÐ{an}Âú×ã${a_1}£¾\frac{3}{2}$£¬${a_{n+1}}={a_n}^2-{a_n}+1$£¬ÇÒ$\sum_{i=1}^{2017}{\frac{1}{a_i}}=2$£¬Ôò4a2018-a1µÄ×î´óֵΪ-$\frac{3}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸