精英家教网 > 高中数学 > 题目详情
已知圆O:交x轴于A,B两点,曲线C是以AB为长轴,离心率为的椭圆,其左焦点为F.若P是圆O上一点,连结PF,过原点P作直线PF的垂线交直线于点Q.
(1)求椭圆C的标准方程;
(2)若点P的坐标为(1,1),求证:直线PQ圆O相切;
(3)试探究:当点P在圆O上运动时(不与A、B重合),直线PQ与圆O是否保持相切的位置关系?若是,请证明;若不是,请说明理由.
(1) +y2="1" (2)因为P(1,1),所以kPF=,所以kOQ=-2,所以直线OQ的方程为y=-2x.再由椭圆的左准线方程为x=-2,能够证明直线PQ与圆O相切.
(3) 直线PQ始终与圆O相切

试题分析:因为a=,e=,所以c=1(2分)则b=1,即椭圆C的标准方程为+y2=1(4分)(2)因为P(1,1),所以kPF=,所以kOQ=-2,所以直线OQ的方程为y=-2x(6分)
又椭圆的左准线方程为x=-2,所以点Q(-2,4)(7分)
所以kPQ=-1,又kOP=1,所以kOP⊥kPQ=-1,即OP⊥PQ,
故直线PQ与圆O相切(9分)
(3)当点P在圆O上运动时,直线PQ与圆O保持相切(10分)
证明:设P(x0,y0)(x0≠±),则y02=2-x02,所以kPF=,kOQ=-,所以直线OQ的方程为y="-" x(12分)所以点Q(-2,(13分)所以kPQ= - ,又kOP= ,所以kOP⊥kPQ=-1,即OP⊥PQ,故直线PQ始终与圆O相切
点评:本题考查圆锥曲线的性质和应用,解题时要认真审题,注意公式的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

若直线3x-4y+12=0与两坐标轴的交点为A,B,则以线段AB为直径的圆的方程为____________________。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点P与两个定点O(0,0),A(-3,0)距离之比为.
(1)求点P的轨迹C方程;
(2)求过点M(2,3)且被轨迹C截得的线段长为2的直线方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,已知点P是⊙O外一点,PS、PT是⊙O的两条切线,过点P作⊙O
的割线PAB,交⊙O于A、B两点,与ST交于点C,求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知点,则以线段为直径的圆的方程是      

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

点P是椭圆上一点, F1、F2是其焦点, 若∠F1P F2=90°, △F1P F2面积为      .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知圆与直线都相切,圆心在直线上,则圆的方(    )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过点A(1,-1),B(-1,1),且圆心在直线x+y-2=0上的圆的方程是(     )
A.(x-3)2+(y+1)2=4B.(x-1)2+(y-1)2=4
C.(x+3)2+(y-1)2=4D.(x+1)2+(y+1)2=4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

直线与椭圆交于两点,以线段为直径的圆过椭圆的右焦点,则椭圆的离心率为(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案