精英家教网 > 高中数学 > 题目详情
8.已知x、y满足约束条件$\left\{\begin{array}{l}{y≤x}\\{x+y≤4}\\{y+2≥0}\end{array}\right.$,则z=2x+y的最小值为-6.

分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.

解答 解:由约束条件$\left\{\begin{array}{l}{y≤x}\\{x+y≤4}\\{y+2≥0}\end{array}\right.$作出可行域如图,

联立$\left\{\begin{array}{l}{y=x}\\{y=-2}\end{array}\right.$,解得A(-2,-2),
化目标函数z=2x+y为y=-2x+z,
由图可知,当直线y=-2x+z过A(-2,-2)时,直线在y轴上的截距最小,z有最小值为2×(-2)-2=-6.
故答案为:-6.

点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.解不等式:
(1)x2-x-2>0;
(2)|2x-3|≤5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在等比数列{an}中.
(1)已知a1=3,q=-2,求a6
(2)已知a3=20,a6=160,求an

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.阅读如图程序框图,若输出的数据为30,则判断框中应填入的条件为(  )
A.i≤3?B.i≤4?C.i≤5?D.i≤6?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在△ABC中,a,b,c分别是角A,B,C的对边,已知(a-3b)cosC=c(3cosB-cosA).
(1)求$\frac{sinB}{sinA}$的值;
(2)若c=$\sqrt{7}$a,求角C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设f(x)=$\left\{\begin{array}{l}{x+1,x<0}\\{1,0≤x<2}\\{x-1,x≥2}\end{array}\right.$
(1)试确定函数f(x)的定义域;
(2)求f(-2),f(0),f(1.5),f(3)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知2Sn=nan+2(n≥2),a2=2,求an的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在等比数列{an}中,若m+n=2k,如何证明am•an=a${\;}_{k}^{2}$(m,n,k∈N*)?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的焦点(4,0),且其渐近线与圆(x-2)2+y2=3相切,则双曲线的方程为(  )
A.$\frac{{x}^{2}}{8}$-$\frac{{y}^{2}}{8}$=1B.$\frac{{x}^{2}}{12}$-$\frac{{y}^{2}}{4}$=1C.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1D.x2-$\frac{{y}^{2}}{16}$=1

查看答案和解析>>

同步练习册答案