分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.
解答 解:由约束条件$\left\{\begin{array}{l}{y≤x}\\{x+y≤4}\\{y+2≥0}\end{array}\right.$作出可行域如图,![]()
联立$\left\{\begin{array}{l}{y=x}\\{y=-2}\end{array}\right.$,解得A(-2,-2),
化目标函数z=2x+y为y=-2x+z,
由图可知,当直线y=-2x+z过A(-2,-2)时,直线在y轴上的截距最小,z有最小值为2×(-2)-2=-6.
故答案为:-6.
点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{x}^{2}}{8}$-$\frac{{y}^{2}}{8}$=1 | B. | $\frac{{x}^{2}}{12}$-$\frac{{y}^{2}}{4}$=1 | C. | $\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1 | D. | x2-$\frac{{y}^{2}}{16}$=1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com