| A. | $\frac{{x}^{2}}{8}$-$\frac{{y}^{2}}{8}$=1 | B. | $\frac{{x}^{2}}{12}$-$\frac{{y}^{2}}{4}$=1 | C. | $\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1 | D. | x2-$\frac{{y}^{2}}{16}$=1 |
分析 求出双曲线的渐近线方程,圆的圆心与半径,利用已知条件列出方程求解即可.
解答 解:双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的焦点(4,0),可得c=4,a2+b2=16,
双曲线的一条渐近线方程为:bx+ay=0,圆(x-2)2+y2=3的圆心(2,0),半径为$\sqrt{3}$.
渐近线与圆(x-2)2+y2=3相切,
可得:$\frac{|2b|}{\sqrt{{a}^{2}+{b}^{2}}}=\sqrt{3}$,
解得b=2$\sqrt{3}$,a=2,
所求的双曲线方程为:$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1.
故选:C.
点评 本题考查圆的方程与双曲线方程的综合应用,考查转化思想以及计算能力.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 2 | C. | $\sqrt{3}$ | D. | 2$\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2\sqrt{2}}{3}$ | B. | (8+4$\sqrt{2}$)π | C. | (8+2$\sqrt{2}$)π | D. | (4+2$\sqrt{2}$)π |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $({-\frac{π}{6},0})∪({0,\frac{π}{6}})$ | B. | $({-\frac{π}{6},0})∪({\frac{π}{6},π})$ | C. | $({-\frac{π}{6},0})∪({\frac{π}{6},\frac{π}{2}})$ | D. | $({-π,-\frac{π}{6}})∪({0,\frac{π}{6}})$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com