精英家教网 > 高中数学 > 题目详情
9.求下列各函数的定义域.
(1)y=x${\;}^{-\frac{3}{2}}$;
(2)y=$\sqrt{9-{3}^{x}}$;
(3)y=1n(3x+1).

分析 根据函数y的解析式,列出使函数解析式有意义的不等式(组),求出解集即可.

解答 解:(1)∵y=x${\;}^{-\frac{3}{2}}$=$\frac{1}{\sqrt{{x}^{3}}}$,
∴x>0,
∴函数y的定义域为(0,+∞);
(2)∵y=$\sqrt{9-{3}^{x}}$,
∴9-3x≥0,
即3x≤9,
解得x≤2,
∴函数y的定义域为(-∞,2];
(3)∵y=1n(3x+1),
∴3x+1>0,
解得x>-$\frac{1}{3}$,
∴函数y的定义域为(-$\frac{1}{3}$,+∞).

点评 本题考查了根据函数的解析式求定义域的应用问题,解题的关键是关键解析式列出使函数有意义的不等式(组),是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.在等比数列{an}中.
(1)已知a1=3,q=-2,求a6
(2)已知a3=20,a6=160,求an

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知2Sn=nan+2(n≥2),a2=2,求an的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在等比数列{an}中,若m+n=2k,如何证明am•an=a${\;}_{k}^{2}$(m,n,k∈N*)?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在1与2之间插入6个正数,使这8个数成等比数列,则插入的6个数的积为8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.不等式|x-3|<5的解集是(-2,8).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在长方体ABCD-A1B1C1D1中,AB=2,AD=1,A1A=1,
(1)求证:直线BC1∥平面D1AC;
(2)求直线BC1到平面D1AC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的焦点(4,0),且其渐近线与圆(x-2)2+y2=3相切,则双曲线的方程为(  )
A.$\frac{{x}^{2}}{8}$-$\frac{{y}^{2}}{8}$=1B.$\frac{{x}^{2}}{12}$-$\frac{{y}^{2}}{4}$=1C.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1D.x2-$\frac{{y}^{2}}{16}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在盒子里有大小相同,仅颜色不同的乒乓球共10个,其中红球4个,白球3个,蓝球3个.现从中任取出一球确定颜色后放回盒子里,再取下一个球.重复以上操作,最多取3次,过程中如果取出蓝色球则不再取球.求:
(Ⅰ)最多取两次就结束的概率;
(Ⅱ)整个过程中恰好取到2个白球的概率;
(Ⅲ)设取球的次数为随机变量X,求X的分布列和数学期望.

查看答案和解析>>

同步练习册答案