精英家教网 > 高中数学 > 题目详情
已知函数y=|-x2-5x-6|,作出函数图象.
考点:函数的图象
专题:作图题
分析:先求出图象与x轴交点,与y轴交点,函数的对称轴,从而画出函数的图象.
解答: 解:y=|-x2-5x-6|=|x2+5x+6|=|(x+2)(x+3)|,
∴图象与x轴交点(-3,0),(-2,0),与y轴交点(0,6),
对称轴x=-
5
2

函数图象如图示:
点评:本题考查了函数的图象的画法,本题属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数y=sin2x+acosx-
1
2
a-
3
2

(1)当a=2时,求f(
π
3
);
(2)求函数的最大值为1时a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1-2x
2x+1
,判断函数f(x)的奇偶性并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2lnx,
(1)求f(x)的极值;
(2)记D={x|f(x)>e2},求当x∈D时,G(x)=
lnx
lnf(x)
的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知cosα=-
4
5
,且α为第三象限角,求sinα,tanα的值.
(2)已知tanα=3,计算
4sinα-2cosα
5cosα+3sinα
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

是否存在实数p使得4x+p<0是x2-x-2>0的必要条件?若存在,求出p的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知m,n为正整数,
(Ⅰ)证明:当x>-1时,(1+x)m≥1+mx;
(Ⅱ)对于n≥6,已知(1-
1
n+3
n
1
2
,求证:
n
k=1
(1-
k
n+3
n<1-(
1
2
n

查看答案和解析>>

科目:高中数学 来源: 题型:

求曲线y=2x-x3过点A(1,1)的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=cosxsinx,给出下列四个说法:
①若f(x1)=-f(x2),则x1=-x2,②点(π,0)是f(x)的一个对称中心,
③f(x)在区间[-
π
4
π
4
]上是增函数,④f(x)的图象关于直线x=
4
对称.
其中正确说法的序号是
 
.(只填写序号)

查看答案和解析>>

同步练习册答案