【题目】如图所示,在直角梯形BCEF中,∠CBF=∠BCE=90°,A,D分别是BF,CE上的点,AD∥BC,且AB=DE=2BC=2AF(如图1),将四边形ADEF沿AD折起,连结BE、BF、CE(如图2).在折起的过程中,下列说法中正确的个数( )
![]()
①AC∥平面BEF;
②B、C、E、F四点可能共面;
③若EF⊥CF,则平面ADEF⊥平面ABCD;
④平面BCE与平面BEF可能垂直
A.0B.1C.2D.3
【答案】C
【解析】
根据折叠前后线段、角的变化情况,由线面平行、面面垂直的判定定理和性质定理对各命题进行判断,即可得出答案.
对①,在图②中,连接
交于点
,取
中点,连接MO,易证AOMF为平行四边形,即AC//FM,所以AC//平面BEF,故①正确;
![]()
对②,如果B、C、E、F四点共面,则由BC//平面ADEF,可得BC//EF,又AD//BC,所以AD//EF,这样四边形ADEF为平行四边形,与已知矛盾,故②不正确;
对③,在梯形ADEF中,由平面几何知识易得EF
FD,又EF
CF,∴EF
平面CDF,
即有CD
EF,∴CD
平面ADEF,则平面ADEF
平面ABCD,故③正确;
对④,在图②中,延长AF至G,使得AF=FG,连接BG,EG,易得平面BCE
平面ABF,BCEG四点共面.过F作FN
BG于N,则FN
平面BCE,若平面BCE
平面BEF,
则过F作直线与平面BCE垂直,其垂足在BE上,矛盾,故④错误.
故选:C.
![]()
科目:高中数学 来源: 题型:
【题目】某公司进行共享单车的投放与损耗统计,到去年
年底单车的市场保有量(已投入市场且能正常使用的单车数量)为
辆,预计今后每年新增单车1000辆,随着单车的频繁使用,估计每年将有200辆车的损耗,并且今后若干年内,年平均损耗在上一年损耗基础上增加
%.
(1)预计
年底单车的市场保有量是多少?
(2)到哪一年底,市场的单车保有量达到最多?该年的单车保有量是多少辆(最后结果精确到整数)?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,若在定义域内存在
,使得
成立,则称
为函数
的局部对称点.
(1)若
、
且
,证明:函数
必有局部对称点;
(2)若函数
在区间
内有局部对称点,求实数
的取值范围;
(3)若函数
在
上有局部对称点,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】部分与整体以某种相似的方式呈现称为分形,一个数学意义上分形的生成是基于一个不断迭代的方程式,即一种基于递归的反馈系统.分形几何学不仅让人们感悟到科学与艺木的融合,数学与艺术审美的统一,而且还有其深刻的科学方法论意义.如图,由波兰数学家谢尔宾斯基1915年提出的谢尔宾斯基三角形就属于-种分形,具体作法是取一个实心三角形,沿三角形的三边中点连线,将它分成4个小三角形,去掉中间的那一个小三角形后,对其余3个小三角形重复上述过程逐次得到各个图形.
![]()
若在图④中随机选取-点,则此点取自阴影部分的概率为( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=
PD.
![]()
(I)证明:平面PQC⊥平面DCQ
(II)求二面角Q-BP-C的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知首项大于0的等差数列
的公差
,且
;
(1)求数列
的通项公式;
(2)若数列
满足:
,
,
,其中
;
①求数列
的通项
;
②是否存在实数
,使得数列
为等比数列?若存在,求出
的值,若不存在,请说明理由;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于数列
,若
(
是与
无关的常数,
)则称数列
叫做“弱等差数列”已知数列
满足:
且
,对于
恒成立,(其中
都是常数)
(1)求证:数列
是“弱等差数列”,并求出数列
的通项公式
(2)当
时,若数列
是单调递增数列,求
的取值范围
(3)若
,且
,数列
满足:
,求![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com