【题目】已知函数
,且
在
处的切线方程为
.
(1)求
的值;
(2)设
,若对任意的
,
,求实数
的取值范围.
科目:高中数学 来源: 题型:
【题目】已知椭圆
(
),点
为椭圆短轴的上端点,
为椭圆上异于
点的任一点,若
点到
点距离的最大值仅在
点为短轴的另一端点时取到,则称此椭圆为“圆椭圆”,已知
.
(1)若
,判断椭圆
是否为“圆椭圆”;
(2)若椭圆
是“圆椭圆”,求
的取值范围;
(3)若椭圆
是“圆椭圆”,且
取最大值,
为
关于原点
的对称点,
也异于
点,直线
、
分别与
轴交于
、
两点,试问以线段
为直径的圆是否过定点?证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在如图所示的几何体中,四边形ABCD为正方形,
平面ABCD,
,
,
.
![]()
(1)求证:
平面PAD;
(2)在棱AB上是否存在一点F,使得平面
平面PCE?如果存在,求
的值;如果不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题中,正确的个数是( )
①直线上有两个点到平面的距离相等,则这条直线和这个平面平行;
②
为异面直线,则过
且与
平行的平面有且仅有一个;
③直四棱柱是直平行六面体;
④两相邻侧面所成角相等的棱锥是正棱锥.
A.0B.1C.2D.3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在直角梯形BCEF中,∠CBF=∠BCE=90°,A,D分别是BF,CE上的点,AD∥BC,且AB=DE=2BC=2AF(如图1),将四边形ADEF沿AD折起,连结BE、BF、CE(如图2).在折起的过程中,下列说法中正确的个数( )
![]()
①AC∥平面BEF;
②B、C、E、F四点可能共面;
③若EF⊥CF,则平面ADEF⊥平面ABCD;
④平面BCE与平面BEF可能垂直
A.0B.1C.2D.3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业在“精准扶贫”行动中,决定帮助一贫困山区将水果运出销售.现有8辆甲型车和4辆乙型车,甲型车每次最多能运6吨且每天能运4次,乙型车每次最多能运10吨且每天能运3次,甲型车每天费用320元,乙型车每天费用504元.若需要一天内把180吨水果运输到火车站,则通过合理调配车辆运送这批水果的费用最少为______元.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列
的首项为
,公差为
,等比数列
的首项为
,公比为
,其中
,且
.
(1)求证:
,并由
推导
的值;
(2)若数列
共有
项,前
项的和为
,其后的
项的和为
,再其后的
项的和为
,求
的比值.
(3)若数列
的前
项,前
项、前
项的和分别为
,试用含字母
的式子来表示
(即
,且不含字母
)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com