精英家教网 > 高中数学 > 题目详情
已知函数f(x)=sin
x
2
cos
x
2
+
3
cos2
x
2

(Ⅰ)当x∈[-
π
2
π
2
]时,求函数f(x)的值域;
(Ⅱ)将函数f(x)的图象按向量
a
=(h,-
3
2
)(0<h<π)平移,使得平移后的函数g(x)的图象关于直线x=
π
4
对称,求函数g(x)的单调递增区间.
分析:(Ⅰ)利用辅助角公式把所给式子化成一个角的一个三角函数值,然后根据自变量x的取值范围,得x+
π
3
的范围,根据正弦函数的图象得sin(x+
π
3
)的范围,最后得整个式子的范围,即函数f(x)的值域;
(Ⅱ)由向量的坐标可知,函数f(x)的图象向左平移h个单位,再向下平移
3
2
个单位,根据平移的规律得平移后的解析式,把x-h+
π
3
看为一个整体,令其等于正弦函数的对称轴,当x=
π
4
时,求出h的值,得具体解析式,把角代入正弦函数的增区间,得x的范围,即函数g(x)的单调递增区间.
解答:解:(1)f(x)=sin
x
2
cos
x
2
+
3
cos2
x
2
=
1
2
sinx+
3
2
(1+cosx)
=sin(x+
π
3
)+
3
2

x∈[-
π
2
π
2
]
,∴x+
π
3
∈[-
π
6
6
]
,∴sin(x+
π
3
)∈[-
1
2
,1]

f(x)∈[
3
-1
2
3
+2
2
]

所以函数f(x)的值域是[
3
-1
2
3
+2
2
]

(2)平移后的函数为g(x)=sin(x-h+
π
3
)

π
4
-h+
π
3
=
π
2
+kπ,得h=
π
12
-kπ(k∈Z),
∵0<h<π,∴h=
π
12

y=sin(x+
π
4
)
,由2kπ-
π
2
≤x+
π
4
≤2kπ+
π
2

2kπ-
4
≤x≤2kπ+
π
4
,k∈Z

所以函数g(x)的单调增区间为[2kπ-
4
,2kπ+
π
4
],k∈Z
点评:求三角函数值域时,一般要把式子化为y=Asin(ωx+φ)的形式,从x的范围由里向外扩,利用数形结合,一直扩到Asin(ωx+φ)的范围,即函数f(x)的值域;求y=Asin(ωx+φ)的对称轴方程、单调递增区间时,要把ωx+φ看作整体,分别代入正弦函数的对称轴方程、单调递增区间,分别求出x得函数f(x)的对称轴方程、单调递增区间,这儿利用整体的思想.本题特色,结合了图象的平移.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(附加题)
(Ⅰ)设非空集合S={x|m≤x≤l}满足:当x∈S时有x2∈S,给出下列四个结论:
①若m=2,则l=4
②若m=-
1
2
,则
1
4
≤l≤1

③若l=
1
2
,则-
2
2
≤m≤0
④若m=1,则S={1},
其中正确的结论为
②③④
②③④

(Ⅱ)已知函数f(x)=x+
a
x
+b(x≠0)
,其中a,b∈R.若对于任意的a∈[
1
2
,2]
,f(x)≤10在x∈[
1
4
,1]
上恒成立,则b的取值范围为
(-∞,
7
4
]
(-∞,
7
4
]

查看答案和解析>>

科目:高中数学 来源: 题型:

将正奇数列{2n-1}中的所有项按每一行比上一行多一项的规则排成如下数表:
记aij是这个数表的第i行第j列的数.例如a43=17
(Ⅰ)  求该数表前5行所有数之和S;
(Ⅱ)2009这个数位于第几行第几列?
(Ⅲ)已知函数f(x)=
3x
3n
(其中x>0),设该数表的第n行的所有数之和为bn
数列{f(bn)}的前n项和为Tn,求证Tn
2009
2010

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•开封二模)已知函数f(x)=sin(x+
π
6
)+2sin2
x
2

(I)求函数f(x)的单调递增区间;
(II)记△ABC的内角A、B、C所对的边长分别为a、b、c若f(A)=
3
2
,△ABC的面积S=
3
2
,a=
3
,求b+c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•黑龙江一模)已知函数f(x)=
3
2
sinxcosx-
3
2
sin2x+
3
4

(Ⅰ) 求函数f(x)的单调递增区间;
(Ⅱ)已知△ABC中,角A,B,C所对的边长分别为a,b,c,若f(A)=0,a=
3
,b=2
,求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黄山模拟)已知函数f(x)=ln2(1+x),g(x)=
x2
1+x

(Ⅰ)分别求函数f(x)和g(x)的图象在x=0处的切线方程;
(Ⅱ)证明不等式ln2(1+x)≤
x2
1+x

(Ⅲ)对一个实数集合M,若存在实数s,使得M中任何数都不超过s,则称s是M的一个上界.已知e是无穷数列an=(1+
1
n
)n+a
所有项组成的集合的上界(其中e是自然对数的底数),求实数a的最大值.

查看答案和解析>>

同步练习册答案