精英家教网 > 高中数学 > 题目详情
(2012•开封二模)已知函数f(x)=sin(x+
π
6
)+2sin2
x
2

(I)求函数f(x)的单调递增区间;
(II)记△ABC的内角A、B、C所对的边长分别为a、b、c若f(A)=
3
2
,△ABC的面积S=
3
2
,a=
3
,求b+c的值.
分析:(Ⅰ)利用两角和的正弦、二倍角的余弦函数公式分别化简函数f(x)解析式的前两项,整理后,再利用特殊角的三角函数值及两角和与差的正弦函数公式化为一个角的正弦函数,根据正弦函数的单调递增区间,列出关于x的方程,求出方程的解即可得到函数的单调递增区间;
(Ⅱ)由f(A)=
3
2
,可求A,由三角形的面积公式S=
1
2
bcsinA可求bc,再由余弦定理可求b+c
解答:解:(I)∵f(x)=sin(x+
π
6
)+2sin2
x
2

=
3
2
sinx+
1
2
cosx+1-cosx
=
3
2
sinx-
1
2
cosx+1

f(x)=sin(x-
π
6
)+1
,…(3分)
令2kπ-
1
2
π≤x-
π
6
≤2kπ+
1
2
π
,k∈Z可得2kπ-
1
3
π≤x≤2kπ+
3

单调递增区间为[2kπ-
1
3
π
,2kπ+
3
],k∈Z…(6分)
(II)∵f(A)=
3
2

∴sin(A-
π
6
)+1=
3
2
即sin(A-
π
6
)=
1
2

∵0<A<π
∴A=
1
3
π

∵△ABC的面积S=
1
2
bcsin60°
=
3
4
bc
=
3
2

∴bc=2
a=
3

由余弦定理可得,a2=b2+c2-2bccos60°
即3=b2+c2-2=(b+c)2-6
∴b+c=3…(12分)
点评:此题考查了三角形的面积公式,两角和与差的正弦函数公式,二倍角的正弦、余弦函数公式,正弦函数的单调性,以及特殊角的三角函数值,熟练掌握公式及定理是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•开封二模)如图,已知四棱锥P-ABCD,侧面PAD为边长等于2的正三角形,底面ABCD为菱形,∠DAB=60°.
(1)证明:∠PBC=90°;
(2)若PB=3,求直线AB与平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•开封二模)设双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)的渐近线与抛物线y=x2+1相切,则该双曲线的离心率等于
5
5

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•开封二模)下列命题中的真命题是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•开封二模)如图,将菱形ABCD沿对角线BD折起,使得C点至C′,E点在线段AC′上,若二面角A-BD-E与二面角E-BD-C′的大小分别为30°和45°,则
AE
EC′
=
2
2
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•开封二模)(选做题)已知f(x)=|x+1|+|x-1|,不等式f(x)<4的解集为M.
(1)求M;
(2)当a,b∈M时,证明:2|a+b|<|4+ab|.

查看答案和解析>>

同步练习册答案