精英家教网 > 高中数学 > 题目详情
17.求函数$y=sin({-2\;x-\frac{π}{4}})+1$的周期、对称轴、对称中心及单调递增区间.

分析 根据正弦函数的图象及性质求解即可.

解答 解:函数$y=sin({-2\;x-\frac{π}{4}})+1$=-sin(2x+$\frac{π}{4}$)+1.
∴周期T=$\frac{2π}{2}=π$.
令2x+$\frac{π}{4}$=$\frac{π}{2}+kπ$,
得:x=$\frac{1}{2}$kπ+$\frac{π}{8}$,k∈Z
即对称轴方程为:x=$\frac{1}{2}$kπ+$\frac{π}{8}$,k∈Z;
令2x+$\frac{π}{4}$=kπ,
得:x=$\frac{1}{2}kπ-\frac{π}{8}$
∴对称中心为($\frac{1}{2}kπ-\frac{π}{8}$,1),k∈Z;
由$\frac{π}{2}+2kπ≤$2x+$\frac{π}{4}$$≤\frac{3π}{2}$+2kπ
得:$kπ+\frac{π}{8}$≤x≤$kπ+\frac{5π}{8}$.
∴单调递增区间为[$kπ+\frac{π}{8}$,$kπ+\frac{5π}{8}$],k∈Z;
综上得:周期T=π,
对称轴方程为:x=$\frac{1}{2}$kπ+$\frac{π}{8}$,k∈Z;
对称中心为($\frac{1}{2}kπ-\frac{π}{8}$,1),k∈Z;
单调递增区间为[$kπ+\frac{π}{8}$,$kπ+\frac{5π}{8}$],k∈Z;

点评 本题主要考查对三角函数的化简计算能力和三角函数的图象和性质的运用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7..求下列函数的导数
(1)y=2xlnx
(2)f(x)=${2^{({x^2}-3x+2)}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.cos(-960°)=(  )
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.一个扇形的所在的圆的半径为5,该扇形的弧长为5
(1)求该扇形的面积              
(2)求该扇形中心角的弧度数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知命题“?x∈R,sinx-2a≥0”是真命题,则a的取值范围是$(-∞,-\frac{1}{2}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设函数φ(x)=ex-1-ax,
( I)当a=1时,求函数φ(x)的最小值;
(Ⅱ)若函数φ(x)在(0,+∞)上有零点,求实数a的范围;
( III)证明不等式ex≥1+x+$\frac{1}{6}{x^3}({x∈R})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.编号为1,2,3的三位学生随意入坐编号为1,2,3的三个座位,每位学生坐一个座位,设与座位编号相同的学生的个数是ξ.
(1)求随机变量ξ的概率分布;
(2)求随机变量ξ的数学期望和方差.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.寒假期间,为了让同学们有国际视野,我校组织了部分同学到美国游学.已知李老师所带的队有3名男同学A、B、C和3名女同学X,Y,Z构成,其班级情况如表:
甲班乙班丙班
男同学ABC
女同学XYZ
现从这6名同学中随机选出2人做回访(每人被选到的可能性相同)
(1)用表中字母列举出所有可能的结果;
(2)设M为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,求事件M发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在三棱锥S-ABC中,SA⊥底面ABC,SA=AB=$\frac{1}{2}$AC=a,∠BAC=60°,D是SC上的点.
(Ⅰ)若SD=$\frac{1}{4}$SC,求证:AC⊥BD;
(Ⅱ)求二面角A-SC-B的余弦值.

查看答案和解析>>

同步练习册答案