精英家教网 > 高中数学 > 题目详情
7..求下列函数的导数
(1)y=2xlnx
(2)f(x)=${2^{({x^2}-3x+2)}}$.

分析 (1)根据导数的运算法则计算即可,
(2)根据复合函数的求导法则计算即可

解答 解:(1)y′=2(lnx+x•$\frac{1}{x}$)=2lnx+2,
(2)f′(x)=${2^{({x^2}-3x+2)}}$ln2•(x2-3x+2)′=)=(2x-3)${2^{({x^2}-3x+2)}}$ln2

点评 本题考查了导数的运算法则和复合函数的求导法则,属于基础题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.设点M,N的坐标分别为(-2,0),(2,0),直线MP,NP相交于点P,且它们的斜率之积是-$\frac{1}{4}$.
(Ⅰ)求点P的轨迹C的方程;
(Ⅱ)设过定点E(0,2)的直线l与曲线C交于不同的两点A、B,且∠AOB为钝角(其中O为坐标原点),求直线l的斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.(Ⅰ)已知sinα+cosα=$\frac{12}{13}$,0<α<π,求sinα-cosα;
(Ⅱ)已知向量$\overrightarrow{a}$=(1,sin(π-α)),$\overrightarrow{b}$=(2,cosα),且$\overrightarrow{a}$∥$\overrightarrow{b}$,求sin2α+sinαcosα.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设随机变量X~N(2,σ2),且P(X≤4)=0.84,则P(X<0)=0.16.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知数列{an}的通项为an=$\frac{4}{11-2n}$,则满足an+1<an的n的最大值为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.不论实数m取何值,直线(m-1)x-y+2m-1=0都过定点(  )
A.(2,-1)B.(-2,1)C.(1,-2)D.(-1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在直角坐标系xOy中,圆C的参数方程为$\left\{\begin{array}{l}x=3+2cosθ\\ y=-4+2sinθ\end{array}\right.$(θ为参数).
(1)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求圆C的极坐标方程;
(2)已知A(2,0),B(0,2),圆C上任意一点M(x,y),求△ABM面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.复数z=m2+2m+(m2+3m+2)i是纯虚数,则实数m的值是(  )
A.0B.-2C.0或-2D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.求函数$y=sin({-2\;x-\frac{π}{4}})+1$的周期、对称轴、对称中心及单调递增区间.

查看答案和解析>>

同步练习册答案