精英家教网 > 高中数学 > 题目详情

【题目】如图所示,茎叶图记录了甲、乙两组各四名同学完成某道数学题(满分12)的得分情况.乙组某个数据的个位数模糊,记为x,已知甲、乙两组的平均成绩相同.

(1)x的值,并判断哪组学生成绩更稳定;

(2)在甲、乙两组中各抽出一名同学,求这两名同学的得分之和低于20分的概率.

【答案】(1)甲组成绩比乙组稳定 (2)

【解析】试题分析:(1)根据两组数据的平均数相等,可得x的值,进而求出两组数据的方差,比较可得哪组学生成绩更稳定;
(2)分别计算在甲、乙两组中各抽出一名同学及成绩和低于20分的取法种数,代入古典概型概率公式,可得答案.

试题解析:

(1) =10,

=10,

x=1,

[(10-9)2+(10-9)2+(11-10)2+(11-10)2]=1,

[(10-8)2+(10-9)2+(11-10)2+(12-10)2]=

∴甲组成绩比乙组稳定.

(2)记甲组4名同学为:A1A2A3A4;乙组4名同学为:B1B2B3B4.分别从甲、乙两组中各抽取一名同学所有可能的结果为:(A1B1),(A1B2),(A1B3),(A1B4),(A2B1),(A2B2),(A2B3),(A2B4),(A3B1),(A3B2),(A3B3),(A3B4),(A4B1),(A4B2),(A4B3),(A4B4),共16. 10

其中得分之和低于20分的共6种,

∴得分之和低于20分的概率.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足a1=﹣ ,an+1= (n∈N+
(1)证明数列{ }是等差数列并求{an}的通项公式.
(2)数列{bn}满足bn= (n∈N+).求{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为自然对数的底数.

(1)讨论函数在区间上的单调性;

2)已知,若对任意,有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC三个顶点坐标分别为:A(1,0),B(1,4),C(3,2),直线l经过点(0,4).
(1)求△ABC外接圆⊙M的方程;
(2)若直线l与⊙M相交于P,Q两点,且|PQ|=2 ,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列的前项和为 ,数列的通项公式为

(1)求数列的通项公式;

(2)设,数列的前项和为

①求

②若,求数列的最小项的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】经销商经销某种农产品,在一个销售季度内,每售出该产品获利润500元,未售出的产品,每亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直图,如图所示.经销商为下一个销售季度购进了该农产品.以)表示下一个销售季度内的市场需求量, (单位:元)表示下一个销售季度内经销该农产品的利润.

(Ⅰ)将表示为的函数;

(Ⅱ)根据直方图估计利润不少于57000元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}满足:a1=1,an+1=3an , n∈N+
(1)求{an}的通项公式及前n项和Sn
(2)已知{bn}是等差数列,Tn为前n项和,且b1=a2 , b3=a1+a2+a3 , 求T20

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为对考生的月考成绩进行分析,某地区随机抽查了名考生的成绩,根据所得数据画了如下的样本频率分布直方图.

(1)求成绩在的频率;

(2)根据频率分布直方图算出样本数据的中位数;

(3)为了分析成绩与班级、学校等方面的关系,必须按成绩再从这人中用分层抽样方法抽取出人作出进一步分析,则成绩在的这段应抽多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 )的左右焦点分别为 ,离心率为,点在椭圆上, ,过与坐标轴不垂直的直线与椭圆交于 两点, 的中点.

(Ⅰ)求椭圆的方程;

(Ⅱ)已知点,且,求直线所在的直线方程.

查看答案和解析>>

同步练习册答案