精英家教网 > 高中数学 > 题目详情

【题目】为对考生的月考成绩进行分析,某地区随机抽查了名考生的成绩,根据所得数据画了如下的样本频率分布直方图.

(1)求成绩在的频率;

(2)根据频率分布直方图算出样本数据的中位数;

(3)为了分析成绩与班级、学校等方面的关系,必须按成绩再从这人中用分层抽样方法抽取出人作出进一步分析,则成绩在的这段应抽多少人?

【答案】(1)0.15;(2)540(分);(3)5.

【解析】试题分析:(1)根据频率分布直方图中频率等于矩形面积求解即可;

(2)中位数是左右面积为0.5位置的数;

(3)根据分层抽样的原理利用比例求解即可.

试题解析:

(1)成绩在的频率为.

(2)因为 ,所以,样本数据的中位数为

(分).

(3)成绩在的频率为,所以名考生中成绩在的人数为(人),再从人用分层抽样方法抽出人,则成绩在的这段抽取(人).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了参加第二届全国数学建模竞赛,长郡中学在高二年级举办了一次选拔赛,共有60名高二学生报名参加,按照不同班级统计参赛人数,如表所示:

班级

宏志班

珍珠班

英才班

精英班

参赛人数

20

15

15

10

(Ⅰ)从这60名高二学生中随机选出2人,求这2人在同一班级的概率;

(Ⅱ)现从这60名高二学生中随机选出2人作为代表,进行大赛前的发言,设选出的2人中宏志班的学生人数为,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,茎叶图记录了甲、乙两组各四名同学完成某道数学题(满分12)的得分情况.乙组某个数据的个位数模糊,记为x,已知甲、乙两组的平均成绩相同.

(1)x的值,并判断哪组学生成绩更稳定;

(2)在甲、乙两组中各抽出一名同学,求这两名同学的得分之和低于20分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若数列{an}的前n项和Sn满足Sn=2an+n.

(Ⅰ)求证:数列{an﹣1}是等比数列;

(Ⅱ)记bn= ,求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆的圆心在坐标原点,且与直线相切.

1)求直线被圆所截得的弦的长;

2)过点作两条与圆相切的直线,切点分别为求直线的方程;

3)若与直线垂直的直线与圆交于不同的两点,若为钝角,求直线轴上的截距的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 且a1=1,an+1= Sn(n=1,2,3,…).则数列{an}的通项公式为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的最小正周期是

(1)求ω的值;

(2)求函数f(x)的最大值,并且求使f(x)取得最大值的x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从正方体ABCD﹣A1B1C1D1的8个顶点中任意取4个不同的顶点,这4个顶点可能是:
1)矩形的4个顶点;
2)每个面都是等边三角形的四面体的4个顶点;
3)每个面都是直角三角形的四面体的4个顶点;
4)有三个面是等腰直角三角形,有一个面是等边三角形的四面体的4个顶点.
其中正确结论的个数为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列的前项和记为 ,点在直线上,其中.

1)若数列是等比数列,求实数的值;

2)设各项均不为0的数列中,所有满足的整数的个数称为这个数列的“积异号数”,令),在(1)的条件下,求数列的“积异号数”.

查看答案和解析>>

同步练习册答案