精英家教网 > 高中数学 > 题目详情
2.已知点A(2,0),点B(0,3),点C在圆x2+y2=1上,当△ABC的面积最小时,点C的坐标为($\frac{{3\sqrt{13}}}{13}$,$\frac{{2\sqrt{13}}}{13}$).

分析 设C(a,b).根据点A、B的坐标利用待定系数法求得直线AB方程,然后根据点到直线的距离和不等式的性质得到a、b的数量关系,将其代入圆的方程即可求得a、b的值,即点C的坐标.

解答 解:设C(a,b).则a2+b2=1,①
∵点A(2,0),点B(0,3),
∴直线AB的解析式为:3x+2y-6=0.
如图,过点C作CF⊥AB于点F,欲使△ABC的面积最小,只需线段CF最短.
则CF=$\frac{|2a+3b-6|}{\sqrt{{2}^{2}+{3}^{2}}}$≥$\frac{\sqrt{13}×|\sqrt{2a•3b}-6|}{13}$,当且仅当2a=3b时,取“=”,
∴a=$\frac{3b}{2}$,②
联立①②求得:a=$\frac{{3\sqrt{13}}}{13}$,b=$\frac{{2\sqrt{13}}}{13}$,
故点C的坐标为($\frac{{3\sqrt{13}}}{13}$,$\frac{{2\sqrt{13}}}{13}$).
故答案是:($\frac{{3\sqrt{13}}}{13}$,$\frac{{2\sqrt{13}}}{13}$).

点评 本题考查了圆的标准方程、点到直线的距离公式、三角形的面积计算公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.指出下列函数的振幅、周期、初相及当x=3π时的相位:
(1)y=-3sin($\frac{1}{4}$x-$\frac{π}{4}$);
(2)y=$\frac{1}{2}$sin(2x-$\frac{5π}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.$\frac{1}{1×3}$+$\frac{1}{2×4}$+$\frac{1}{3×5}$+…+$\frac{1}{8×10}$=(  )
A.$\frac{9}{10}$B.$\frac{9}{20}$C.$\frac{29}{45}$D.$\frac{29}{90}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.集合A={x|x+y=1},B={(x,y)|x-y=1},则A∩B=∅.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.A、B两岛相距100海里,B在A北偏东30°方向,甲船A以50海里/小时的速度向B航行,同时,乙船从B以30诲里/小时的速度沿南偏东30°方向航行,则$1\frac{16}{49}$小时后两船之间距离最小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图1已知正方形ABCD的边长为2,E,F分别为边AD、AB的中点,将△ABE沿BE折起,使平面ABE⊥平面BCDE,如图2,点G为AC的中点
(Ⅰ)求证:DG∥平面ABE;
(Ⅱ)求椎体G-ABE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知在△ABC中,∠B=90°,D,E分别为边BC,AC的中点,将△CDE沿DE翻折后,使之成为四棱锥C′-ABDE(如图).

(Ⅰ)求证:DE⊥平面BC′D;
(Ⅱ)设平面C′DE∩平面ABC′=l,求证:AB∥l;
(Ⅲ)若C′D⊥BD,AB=2,BD=3,F为棱BC′上一点,设$\frac{BF}{FC'}=λ$,当λ为何值时,三棱锥C′-ADF的体积是1?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设集合W由满足下列两个条件的数列{an}构成:①$\frac{{a}_{n}+{a}_{n+2}}{2}<{a}_{n+1}$,②存在实数a、b使a≤an≤b对任意正整数n都成立;
(1)现在给出只有5项的有限数列{an},{bn},其中a1=2,a2=6,a3=8,a4=9,a5=12;bk=log2k(k=1,2,3,4,5),试判断数列{an},{bn}是否为集合W的元素;
(2)数列{cn}的前n项和为Sn,c1=1,且对任意正整数n,点(cn+1,Sn)在直线2x+y-2=0上,证明:数列{Sn}∈W,并写出实数a、b的取值范围;
(3)设数列{dn}∈W,且对满足条件②中的实数b的最小值b0,都有dn≠b0(n∈N+),求证:数列{dn}一定是单调递增数列.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知△ABC外接圆的圆心为O,且$\overrightarrow{AO}=\frac{1}{2}(\overrightarrow{AB}+\overrightarrow{AC})$,则$\overrightarrow{AB}$与$\overrightarrow{AC}$的夹角为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

同步练习册答案