精英家教网 > 高中数学 > 题目详情
12.命题“?x≥1,x>2”的否定形式是?x≥1,x≤2.

分析 利用全称命题对方的是特称命题,写出结果即可.

解答 解:因为全称命题对方的是特称命题,所以,命题“?x≥1,x>2”的否定形式是:?x≥1,x≤2成立.
故答案为:?x≥1,x≤2.

点评 本题考查命题的否定,特称命题与全称命题的否定关系,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.某正三棱柱(底面是正三角形的直棱柱)的正视图和俯视图如图所示.若它的体积为2$\sqrt{3}$,则它的侧视图面积为(  )
A.2$\sqrt{3}$B.3C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知集合A={x|3≤x<7},B={x|2<x<10},全集为实数集R
(1)求A∪B
(2)求(∁RA)∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.下列命题中,
①若p、q为两个命题,则“p且q为真”是“p或q为真”的必要不充分条件;
②若p为:?x∈R,x 2+2x+2≤0,则¬p为:?x∈R,x 2+2x+2>0;
③若椭圆 $\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{25}$=1的两焦点为F 1、F 2,且弦AB过F 1点,则△ABF 2的周长为16.
正确命题的序号是②.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设全集U={0,1,2,3,4,5},集合A={2,4},B={x|x2-5x+4<0,x∈U},则集合(∁UA)∩(∁UB)=(  )
A.{0,4,5,2}B.{0,4,5}C.{2,4,5}D.{0,1,5}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知圆C:(x-1)2+(y-2)2=4的周长,则点P(3,3)与圆C上的动点M的距离的最大值为(  )
A.$\sqrt{5}$B.$\sqrt{5}-2$C.$\sqrt{5}+2$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.某地实行阶梯电价,以日历年(每年1月1日至12月31日)为周期执行居民阶梯电价,即:一户居民用户全年不超过2880度(1度=千瓦时)的电量,执行第一档电价标准,每度电0.4883元;全年超过2880度至4800度之间的电量,执行第二档电价标准,每度电0.5383元;全年超过4800度以上的电量,执行第三档电价标准,每度电0.7883元.下面是关于阶梯电价的图形表示,其中正确的有(参考数据:0.4883元/度×2880度=1406.30元,0.5383元/度×(4800-2880)度+1406.30元=2439.84元.)(  )
A.①②B.②③C.①③D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若复数z满足z2+2z=-10,则|z|=(  )
A.$\sqrt{7}$B.$2\sqrt{2}$C.3D.$\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知f(x)=-x2+ax-2,g(x)=xlnx.
(1)对任意x∈(0,+∞),g(x)≥f(x)恒成立,求实数a的取值范围;
(2)求函数g(x)在区间[m.m+1](m>0)上的最值;
(3)证明:对任意x∈(0,+∞),都有lnx+$\frac{2}{ex}$≥$\frac{1}{{e}^{x}}$成立.

查看答案和解析>>

同步练习册答案