精英家教网 > 高中数学 > 题目详情
是否存在角α和β,当α∈(-
π
2
π
2
),β∈(0,π)时,等式
sin(3π-α)=
2
(
π
2
-β)
3
cos(-α)=-
2
cos(π+β)
同时成立?若存在,则求出α和β的值;若不存在,请说明理由.
考点:同角三角函数基本关系的运用
专题:计算题,三角函数的求值
分析:首先由诱导公式简化已知条件并列方程组,再利用公式sin2β+cos2β=1解方程组,最后根据特殊角三角函数值求出满足要求的α、β.
解答: 解 存在α=
π
4
,β=
π
6
使等式同时成立.理由如下:
由由条件得
sinα=
2
sinβ
3
cosα=
2
cosβ

两式平方相加得,sin2α+3cos2α=2,∴cos2α=
1
2
即cosα=±
2
2

∵α∈(-
π
2
π
2
),∴α=
π
4
或α=-
π
4

将α=
π
4
代入②得cosβ=
3
2
.又β∈(0,π),
∴β=
π
6
,代入①可知,符合.
将α=-
π
4
代入②得β=
π
6
,代入①可知,不符合.
综上可知α=
π
4
,β=
π
6
点评:本题综合考查诱导公式、同角正余弦关系式及特殊角三角函数值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某流程图如图所示,现输入如下四个函数,则可以输出的函数是(  )
A、f(x)=sinx
B、f(x)=cosx
C、f(x)=
|x|
x
D、f(x)=x2

查看答案和解析>>

科目:高中数学 来源: 题型:

集合M={x|x=
2
+
π
4
,k∈Z},N={x|x=
4
+
π
2
,k∈Z},则(  )
A、M=NB、M?N
C、M?ND、M∩N=∅

查看答案和解析>>

科目:高中数学 来源: 题型:

实数m分别取什么数时,复数z=(1+i)m2+(5-2i)m+(6-15i)是:
(1)实数;
(2)虚数;
(3)纯虚数;
(4)对应点在第三象限.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,平行四边形ABCD中,∠DAB=60°,AB=2,AD=4.将△CBD沿BD折起到△EBD的位置,使平面EBD⊥平面ABD.
(1)求证:AB⊥DE;
(2)求三棱锥E-ABD的侧面积;
(3)求三棱锥E-ABD的外接球体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
ax+c
x2+1
的图象过点(-1,-2),且满足f(-x)+f(x)=0.
(1)求函数f(x)的单调区间与极值;
(2)若P(x0,y0)为函数y=f(x)的图象上任意一点,直线l与函数y=f(x)的图象切于点P,求直线l的斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a>3,n≥3,用数学归纳法证明:(1+a)n>1+na+
n(n-1)
2
a2

查看答案和解析>>

科目:高中数学 来源: 题型:

设角α的终边上一点P(1,-
3
),求值:
(1)sinα;  
(2)tan2α.

查看答案和解析>>

科目:高中数学 来源: 题型:

若z∈C,|z-2|=
11
,且|z-3|=4,求复数z.

查看答案和解析>>

同步练习册答案