精英家教网 > 高中数学 > 题目详情
下列判断不正确的是(  )
A、一个平面把整个空间分成两部分
B、两个平面将整个空间可分为三或四部分
C、任何一个平面图形都是一个平面
D、圆和平面多边形都可以表示平面
考点:平面的基本性质及推论
专题:空间位置关系与距离
分析:根据平面的基本性质分别进行判断即可.
解答: 解:A.一个平面把整个空间分成两部分,正确.
B.两个平面将整个空间可分为三或四部分,正确.
C.任何一个平面图形都可以表示一个平面,故C错误.
D.圆和平面多边形都可以表示平面,正确,
故错误的是C,
故选:C
点评:本题主要考查平面的基本性质,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设a=log 
1
3
2,b=log 
1
2
3,c=(
1
3
0.3,则(  )
A、a<b<c
B、a<c<b
C、b<c<a
D、b<a<c

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l的参数方程为
x=5-
3
2
t
y=-
3
+
1
2
t
(t参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ4cos(θ-
π
3
).
(1)判断直线与圆的位置关系;
(2)若点P(x,y)在圆C上,求
3
x+y的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列四个命题中,
①二直线平行的充要条件是它们的斜率相等;
②点P(x,y)到A(-2,0),B(2,0)的距离和是4,则P的轨迹是线段AB;
③双曲线上的点P与两焦点F1,F2满足|PF1|=2|PF2|,则双曲线的离心率e∈(1,3];
④若△ABC的周长为10,A(-1,0)、B(1,0),则点C的轨迹方程是
x2
16
+
y2
15
=1.
其中正确的命题是
 
(将你认为正确的命题的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C的焦点为F1(-2,0),F2(2,0),且离心率为2;
(Ⅰ)求双曲线的标准方程;
(Ⅱ)若经过点M(1,3)的直线l交双曲线C于A,B两点,且M为AB的中点,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

在几何体ABCDE中,∠BAC=
π
2
,DC⊥平面ABC,EB⊥平面ABC,AB=AC=BE=2,CD=1.
(Ⅰ)设F为BC的中点,求证:平面AFD⊥平面AFE;
(Ⅱ)设平面ABE与平面ACD的交线为直线l,求证:l∥平面BCDE;
(Ⅲ)求几何体ABCDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

过点P(0,2)的直线和抛物线y2=8x交于A,B两点,若线段AB的中点在直线x=2上,求弦AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

曲线C与双曲线x2-y2=a2关于点(3,4)对称,求曲线C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,椭圆C的焦点为F1(-4,0)、F2(4,0),且经过点P(3,1).
(1)求椭圆C的标准方程;
(2)若点M在椭圆C上,且
OM
=
1
2
PF1
PF2
,求λ的值.

查看答案和解析>>

同步练习册答案