精英家教网 > 高中数学 > 题目详情

【题目】已知中心在坐标原点、焦点在x轴上的椭圆它的离心率为且与直线xy10相交于MN两点若以MN为直径的圆经过坐标原点求椭圆的方程.

【答案】

【解析】试题分析:设椭圆方程(a>b>0),依题意椭圆方程可转化为,与直线x+y﹣1=0联立,设M(x1,y1)、N(x2,y2),利用OMON可得x1x2+y1y2=0,利用韦达定理可得到关于b的关系式,从而可求得b2与a2

试题解析:

设椭圆方程为=1(ab>0),

e,∴a2=4b2,即a=2b.

椭圆方程为=1.

把直线方程代入并化简,得5x2-8x+4-4b2=0.

M(x1y1)、N(x2y2),则

x1x2x1x2 (4-4b2).

y1y2=(1-x1)(1-x2)

=1-(x1x2)+x1x2 (1-4b2).

由于OMON,∴x1x2y1y2=0.

解得b2a2.

椭圆方程为x2y2=1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】【2016高考北京文数】某市居民用水拟实行阶梯水价,每人月用水量中不超过w立方米的部分按4元/立方米收费,超出w立方米的部分按10元/立方米收费.从该市随机调查了10 000位居民,获得了他们某月的用水量数据,整理得到如下频率分布直方图:

(I)如果w为整数,那么根据此次调查,为使80%以上居民在该月的用水价格为4元/立方米,w至少定为多少?

(II)假设同组中的每个数据用该组区间的右端点值代替,当w=3时,估计该市居民该月的人均水费.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在30瓶饮料中,有3瓶已过了保质期.从这30瓶饮料中任取2瓶,已知所取的2瓶全在保质期内的概率为 ,则至少取到1瓶已过保质期的概率为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】写出下列命题的否定,并判断其真假:

(1)p:末位数字为9的整数能被3整除;

(2)p:有的素数是偶数;

(3)p:至少有一个实数x,使x210

(4)pxyRx2y22x4y50.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设两个非零向量 不共线.
(1)如果 = + =2 +8 =3 ﹣3 ,求证:A、B、D三点共线;
(2)若| |=2,| |=3, 的夹角为60°,是否存在实数m,使得m + 垂直?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 ,曲线上的任意一点满足: .

(1)求点的轨迹方程;

(2)过点的直线与曲线交于 两点,交轴于点,设 ,试问是否为定值?如果是定值,请求出这个定值,如果不是定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线Cy24x的焦点为F过点F的直线lC相交于AB两点|AB|8求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

(Ⅰ)当时,求曲线在点处的切线方程;

(Ⅱ)设,若对任意的,存在使得成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2sin(2x﹣ ),x∈R.

(1)在给定的平面直角坐标系中,画函数f(x)=2sin(2x﹣ ),x∈[0,π]的简图;
(2)求f(x)=2sin(2x﹣ ),x∈[﹣π,0]的单调增区间;
(3)函数g(x)=2cos2x的图象只经过怎样的平移变换就可得到f(x)=2sin(2x﹣ ),x∈R的图象?

查看答案和解析>>

同步练习册答案