分析 (1)求出函数的导数,解关于a的方程,求出a的值即可;
(2)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;
(3)分别求出f(x)和g(x)的切线,从而判定f(x)和g(x)的公切线即可.
解答 解:(1)因为f'(x)=3ax2+6x-6a,
所以f'(-1)=0,
即3a-6-6a=0,所以a=-2.
(2)由(1)有f(x)=-2x3+3x2+12x-11,
则f'(x)=-6x2+6x+12=-6(x-2)(x+1),
| x | (-∞,-1) | (-1,2) | (2,+∞) |
| f'(x) | - | + | - |
| f(x) |
点评 本题考查了切线方程问题,考查函数的单调性,导数的应用问题,是一道综合题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2$\sqrt{2}$ | B. | 2$\sqrt{3}$ | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|x=-2k+1,k∈z} | B. | {x|x=2k-1,k∈z} | C. | {x|x=-2k-1,k∈z} | D. | {x|x=2k,k∈z} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{22}{3}$ | B. | $\frac{1}{2}$ | C. | $-\frac{1}{2}$ | D. | $-\frac{22}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{3}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{6}$ | D. | $\frac{π}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com