【题目】已知离心率为
的椭圆C:
+
=1(a>b>0)过点P(﹣1,
).
(1)求椭圆C的方程;
(2)直线AB:y=k(x+1)交椭圆C于A、B两点,交直线l:x=m于点M,设直线PA、PB、PM的斜率依次为k1、k2、k3 , 问是否存在实数t,使得k1+k2=tk3?若存在,求出实数t的值以及直线l的方程;若不存在,请说明理由.
【答案】
(1)解:由椭圆的离心率e=
=
,则a=
c,
b2=a2﹣c2=c2,将P代椭圆方程:
,则
,解得:c=1,
则a=
,b=1,
∴椭圆的方程: ![]()
(2)解:由题意可知:k显然存在且不为0,设A(x1,y1),B(x2,y2),y1=k(x1+1),y2=k(x2+1),
则
,整理得:(1+2k2)x2+4k2x+2k2﹣2=0,
x1+x2=﹣
,x1x2=
,
当x=m时,y=k(m+1),
则k1=
,k2=
,则k3=
,
则k1+k2=
+
=
=
=2k+
,
由k1+k2=tk3,2k+
=t×
=tk﹣
,则当t=2,m=﹣2
∴当直线l:x=﹣2,存在实数t=2,使得k1+k2=tk3成立
【解析】(1)由椭圆的离心率公式,将P代椭圆方程,即可求得a和b的值,即可求得椭圆方程;(2)将直线l代入椭圆方程,利用韦达定理及直线的斜率公式,求得k1+k2及k3,假设存在实数t,使得k1+k2=tk3,代入即可求得t和m的值.
科目:高中数学 来源: 题型:
【题目】如图①,在矩形
中,
,
是
的中点,将三角形
沿
翻折到图②的位置,使得平面
平面
.![]()
(1)在线段
上确定点
,使得
平面
,并证明;
(2)求
与
所在平面构成的锐二面角的正切值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合A={3,a2},集合B={0,b,1﹣a},且A∩B={1},则A∪B=( )
A.{0,1,3}
B.{1,2,4}
C.{0,1,2,3}
D.{0,1,2,3,4}
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知x,y∈R,且
,则存在θ∈R,使得xcosθ+ysinθ+1=0成立的P(x,y)构成的区域面积为( )
A.4
﹣ ![]()
B.4
﹣ ![]()
C.![]()
D.
+ ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合A={x|x<2},B={x|3﹣2x>0},则( )
A.A∩B={x|x<
}
B.A∩B=?
C.A∪B={x|x<
}
D.AUB=R
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动圆
经过点
,并且与圆
相切.
(1)求点P的轨迹C的方程;
(2)设
为轨迹C内的一个动点,过点
且斜率为
的直线
交轨迹C于A,B两点,当k为何值时?
是与m无关的定值,并求出该值定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设定义在R上的函数y=f(x)的导函数为f′(x).如果存在x0∈[a,b],使得f(b)-f(a)=f′(x0)(b-a)成立,则称x0为函数f(x)在区间[a,b]上的“中值点”.那么函数f(x)=x3-3x在区间[-2,2]上的“中值点”为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com