精英家教网 > 高中数学 > 题目详情

【题目】设定义在R上的函数y=f(x)的导函数为f′(x).如果存在x0∈[a,b],使得f(b)-f(a)=f′(x0)(b-a)成立,则称x0为函数f(x)在区间[a,b]上的“中值点”.那么函数f(x)=x3-3x在区间[-2,2]上的“中值点”为

【答案】
【解析】设函数f(x)的“中值点”为x0 , 则f′(x0)= =1,即3x02-3=1,解得x0=± =± ∈[-2,2],故函数y=x3-3x在区间[-2,2]上“中值点”的个数是2.根据题意,对f(x)求导数,代入新定义公式,求出中值点.对于函数求导,一般要遵循先化简,再求导的基本原则.求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用.在实施化简时,首先要注意化简的等价性,避免不必要的运算失误.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知离心率为 的椭圆C: + =1(a>b>0)过点P(﹣1, ).
(1)求椭圆C的方程;
(2)直线AB:y=k(x+1)交椭圆C于A、B两点,交直线l:x=m于点M,设直线PA、PB、PM的斜率依次为k1、k2、k3 , 问是否存在实数t,使得k1+k2=tk3?若存在,求出实数t的值以及直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来郑州空气污染较为严重,现随机抽取一年(365天)内100天的空气中 指数的监测数据,统计结果如下:

空气质量

轻微污染

轻度污染

中度污染

中度重污染

重度污染

天数

4

13

18

30

9

11

15

记某企业每天由空气污染造成的经济损失为 (单位:元), 指数为 .当 在区间 内时对企业没有造成经济损失;当 在区间 内时对企业造成经济损失成直线模型(当 指数为150时造成的经济损失为500元,当 指数为200 时,造成的经济损失为700元);当 指数大于300时造成的经济损失为2000元.

非重度污染

重度污染

合计

供暖季

非供暖季

合计

100


(1)试写出 的表达式;
(2)试估计在本年内随机抽取一天,该天经济损失 大于500元且不超过900元的概率;
(3)若本次抽取的样本数据有30天是在供暖季,其中有8天为重度污染,完成下面列联表,并判断是否有 的把握认为郑州市本年度空气重度污染与供暖有关?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设△ABC是边长为4的正三角形,点P1 , P2 , P3 , 四等分线段BC(如图所示)

(1)P为边BC上一动点,求 的取值范围?
(2)Q为线段AP1上一点,若 =m + ,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)(x∈R)满足f(1)=1,且f(x)的导函数f′(x)< ,则f(x)< 的解集为( )
A.{x|-1<x<1}
B.{x|x<-1}
C.{x|x<-1,或x>1}
D.{x|x>1}

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1+ )(1+x)6展开式中x2的系数为(  )
A.15
B.20
C.30
D.35

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设 是定义在 上的函数,则“函数 为偶函数”是“函数 为奇函数”的( )
A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥 中,底面 为正方形, 平面 ,且 ,点 在线段 上,且 .

(Ⅰ)证明:平面 平面
(Ⅱ)求四棱锥 的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我市某小学三年级有甲、乙两个班,其中甲班有男生30人,女生20人,乙班有男生25人,女生25人,现在需要各班按男、女生分层抽取 的学生进行某项调查,则两个班共抽取男生人数是

查看答案和解析>>

同步练习册答案