精英家教网 > 高中数学 > 题目详情

【题目】我市某小学三年级有甲、乙两个班,其中甲班有男生30人,女生20人,乙班有男生25人,女生25人,现在需要各班按男、女生分层抽取 的学生进行某项调查,则两个班共抽取男生人数是

【答案】11
【解析】甲班有男生30人,乙班有男生25人,女生25人,现在需要各班按男生分层抽取20%的学生,故有30×20%+25×20%=6+5=11
所以答案是:11.
【考点精析】根据题目的已知条件,利用分层抽样的相关知识可以得到问题的答案,需要掌握先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,最后,将这些子样本合起来构成总体的样本.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设定义在R上的函数y=f(x)的导函数为f′(x).如果存在x0∈[a,b],使得f(b)-f(a)=f′(x0)(b-a)成立,则称x0为函数f(x)在区间[a,b]上的“中值点”.那么函数f(x)=x3-3x在区间[-2,2]上的“中值点”为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-5:不等式选讲
已知 ).
(1)若 的解集为 ,求 的值;
(2)若对任意 ,不等式 恒成立,求实数 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(Ⅰ)解不等式
(Ⅱ)若不等式 的解集为 ,且满足 ,求实数 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .
(Ⅰ)当 时,求函数 处的切线方程;
(Ⅱ)试判断函数 零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 (其中 是自然对数的底数)
(1)若 ,当 时,试比较 与2的大小;
(2)若函数 有两个极值点 ,求 的取值范围,并证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的左、右焦点分别为 ,若椭圆上存在点 使 成立,则该椭圆的离心率的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .
(Ⅰ)当 处的切线与直线 垂直时,方程 有两相异实数根,求 的取值范围;
(Ⅱ)若幂函数 的图象关于 轴对称,求使不等式 上恒成立的 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设满足以下两个条件的有穷数列 阶“期待数列”:

.
(1)分别写出一个单调递增的 3 阶和 4 阶“期待数列”.
(2)若某 2017 阶“期待数列”是等差数列,求该数列的通项公式.
(3)记 阶“期待数列”的前 项和为 ,试证: .

查看答案和解析>>

同步练习册答案