分析 由a1,a2,a3均为正数,运用三元基本不等式,可得a1a2a3≤$\frac{1}{27}$,再由$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+$\frac{1}{{a}_{3}}$≥3$\root{3}{\frac{1}{{a}_{1}{a}_{2}{a}_{3}}}$,即可得到所求最小值.
解答 解:a1,a2,a3均为正数,
由a1+a2+a3≥3$\root{3}{{a}_{1}{a}_{2}{a}_{3}}$,
可得$\root{3}{{a}_{1}{a}_{2}{a}_{3}}$≤$\frac{1}{3}$,
即a1a2a3≤$\frac{1}{27}$,
则$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+$\frac{1}{{a}_{3}}$≥3$\root{3}{\frac{1}{{a}_{1}{a}_{2}{a}_{3}}}$≥3$\root{3}{27}$=9.
当且仅当a1=a2=a3=$\frac{1}{3}$时,取得最小值9.
点评 本题考查最值的求法,注意运用三元基本不等式,考查运算能力,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{7}$ | B. | $\sqrt{5}$ | C. | $\frac{\sqrt{5}}{2}$ | D. | $\frac{\sqrt{7}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com