【题目】如图,已知椭圆与的中心在坐标原点,长轴均为且在轴上,短轴长分别为,,过原点且不与轴重合的直线与,的四个交点按纵坐标从大到小依次为,记,和的面积分别为和.
(1)当直线与轴重合时,若,求的值;
(2)当变化时,是否存在与坐标轴不重合的直线,使得?并说明理由.
【答案】(1);(2)见解析
【解析】
(1)设出两个椭圆的方程,当直线与轴重合时,求出和的面积分和,直接由面积比列式求的值.
(2)假设存在与坐标轴不重合的直线,使得,设出直线方程,由点到直线的距离公式求出和到直线的距离,利用数学转化思想把两个三角形的面积比转化为线段长度比,由弦长公式得到线段长度比的另一表达式,两式相等得到,换元后利用非零的值存在讨论的取值范围.
由题意可设椭圆和的方程分别为
,,
其中,
(1)如图,若直线与轴重合,即直线的方程为
,
所以
在和的方程中分别令,
可得 于是
若则 化简得
由解得
故直线与轴重合时,若,则
(2)如图
在与坐标轴不重合的直线,使得,
根据对称性,不妨设直线 ,
点,,到直线的距离分别为,
则,,
所以,
又
,
所以即
由对称性可知
所以
于是①
将直线的方程分别与和的方程联立,
可求得
根据对称性可知
于是
,②
从而由①和②可得
,③
令,则由,
可得于是由③可得
因为 所以
于是③关于有解,当且仅当
等价于
由解得
即,由解得
所以当时,不存在与坐标轴不重合的直线使得
当时,存在与坐标轴不重合的直线使得
科目:高中数学 来源: 题型:
【题目】为了解某中学学生对《中华人民共和国交通安全法》的了解情况,调查部门在该校进行了一次问卷调查(共12道题),从该校学生中随机抽取40人,统计了每人答对的题数,将统计结果分成,,,,,六组,得到如下频率分布直方图.
(1)若答对一题得10分,未答对不得分,估计这40人的成绩的平均分(同一组中的数据用该组区间的中点值作代表);
(2)若从答对题数在内的学生中随机抽取2人,求恰有1人答对题数在内的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给定一个数列,在这个数列里,任取项,并且不改变它们在数列中的先后次序,得到的数列称为数列的一个阶子数列.
已知数列的通项公式为(为常数),等差数列是
数列的一个3阶子数列.
(1)求的值;
(2)等差数列是的一个 阶子数列,且
(为常数,,求证:;
(3)等比数列是的一个 阶子数列,
求证:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知中心在原点,焦点在轴上,离心率为的椭圆过点
(1)求椭圆的方程;
(2)设不过原点的直线与该椭圆交于两点,满足直线的斜率依次成等比数列,求面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】公元2019年,石室2160岁!文翁兴学2160周年纪念活动于2019年11月9日在石室中学文庙校区运动场隆重召开,会场是由一个长,宽的长方形及两个以长方形宽为直径的半圆相接组成,整个会场关于中轴线对称,图形如下.
(1)若、两位同学分别在左右两个半圆弧上值勤,则、两位同学在圆弧什么位置时相距最远,距离为多少?并说明原因.
(2)在(1)问的情况下,若要在主会台后的会场边界上关于中轴线对称的两点、处分别放置两个音响,为了达到最好听觉效果,两个音响的距离要足够大,同时、两位同学听到两个音响传来的声音时间差不超过0.18秒,求音响距中轴线距离约为多少时为最佳放置点.(注:不超过0.18秒以秒计算,声音在空气中的传播速度为).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列四个命题:①有的质数是偶数;②存在正整数,使得为的约数;③有的三角形三个内角成等差数列;④与给定的圆只有一个公共点的直线是圆的切线.其中既是存在性命题又是真命题的个数为( )
A.B.C.D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com