精英家教网 > 高中数学 > 题目详情
3.(1)若正数x,y满足x+3y=5xy,求3x+4y的最小值;
(2)已知a为正实数且a2+$\frac{b^2}{2}$=1,求a$\sqrt{1+{b^2}}$的最大值.

分析 (1)将方程变形$\frac{1}{5y}+\frac{3}{5x}$=1,代入可得3x+4y=(3x+4y)($\frac{1}{5y}+\frac{3}{5x}$)=$\frac{13}{5}$+$\frac{3x}{5y}$+$\frac{12y}{5x}$,然后利用基本不等式即可求解.
(2)由a2+$\frac{b^2}{2}$=1,得2a2+b2=2,2a2+b2+1=3≥2$\sqrt{2}$•a$\sqrt{1+{b^2}}$,即可得出结论.

解答 解:(1)∵x+3y=5xy,x>0,y>0
∴$\frac{1}{5y}+\frac{3}{5x}$=1
∴3x+4y=(3x+4y)($\frac{1}{5y}+\frac{3}{5x}$)=$\frac{13}{5}$+$\frac{3x}{5y}$+$\frac{12y}{5x}$≥$\frac{13}{5}$+2$\sqrt{\frac{3x}{5y}•\frac{12y}{5x}}$=5
当且仅当$\frac{3x}{5y}$=$\frac{12y}{5x}$,即x=2y=1时取等号,
∴3x+4y的最小值为5;
(2)∵a2+$\frac{b^2}{2}$=1,
∴2a2+b2=2,
∴2a2+b2+1=3≥2$\sqrt{2}$•a$\sqrt{1+{b^2}}$,
∴a$\sqrt{1+{b^2}}$≤$\frac{3\sqrt{2}}{4}$,
∴a$\sqrt{1+{b^2}}$的最大值$\frac{3\sqrt{2}}{4}$.

点评 本题主要考查了利用基本不等式求解最值问题,解题的关键是基本不等式的应用条件的配凑.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.设直线的参数方程为$\left\{\begin{array}{l}{x=1+t}\\{y=-2+2t}\end{array}\right.$,它与椭圆$\frac{4{x}^{2}}{9}$+$\frac{{y}^{2}}{9}$=1的交点为A和B,求线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知数列{an}满足a1=10,an+1-an=2n(n∈N*),则$\frac{a_n}{n}$的最小值为$\frac{16}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.高三毕业时,甲、乙、丙、丁四位同学站成一排合影留念,则甲乙相邻的概率为(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图,正四面体ABCD的顶点A,B,C分别在两两垂直的三条射线Ox,Oy,Oz上,则在下列命题中,错误的为(  )
A.O-ABC是正三棱锥(底面为正三角形,顶点在底面的投影为底面的中心)
B.直线OB∥平面ACD
C.OD⊥平面ABC
D.直线CD与平面ABC所成的角的正弦值为$\frac{{\sqrt{6}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.复数i-1的共轭复数是-1-i.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.郑州市的机动车牌照号码自主选号统一由2个英文字母与3个数字组成,若要求2个字母互不相同,这种牌照的号码最多有(  )个.
A.A${\;}_{26}^{2}$103C${\;}_{5}^{2}$B.A${\;}_{26}^{2}$A${\;}_{10}^{3}$
C.(C${\;}_{26}^{1}$)2A${\;}_{10}^{3}$C${\;}_{5}^{2}$D.A${\;}_{26}^{2}$103

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数y=$\frac{\sqrt{lo{g}_{2}x}}{lo{g}_{2}(3-x)}$的定义域为{x|1≤x<3且x≠2}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.底面边长和高都为2的正四棱锥的表面积为4+4$\sqrt{5}$.

查看答案和解析>>

同步练习册答案