精英家教网 > 高中数学 > 题目详情
13.设直线的参数方程为$\left\{\begin{array}{l}{x=1+t}\\{y=-2+2t}\end{array}\right.$,它与椭圆$\frac{4{x}^{2}}{9}$+$\frac{{y}^{2}}{9}$=1的交点为A和B,求线段AB的长.

分析 直线的参数方程为$\left\{\begin{array}{l}{x=1+t}\\{y=-2+2t}\end{array}\right.$,消去参数t化为普通方程:y=2x-4.代入椭圆可得:8x2-16x+7=0,利用一元二次方程的根与系数的关系、弦长公式即可得出.

解答 解:直线的参数方程为$\left\{\begin{array}{l}{x=1+t}\\{y=-2+2t}\end{array}\right.$,消去参数t化为普通方程:y=2x-4.
代入椭圆$\frac{4{x}^{2}}{9}$+$\frac{{y}^{2}}{9}$=1,可得:8x2-16x+7=0,
设A(x1,y1),B(x2,y2),则x1+x2=2,x1x2=$\frac{7}{8}$.
∴|AB|=$\sqrt{(1+{2}^{2})[({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}]}$=$\sqrt{5×(4-4×\frac{7}{8})}$=$\frac{\sqrt{10}}{2}$.

点评 本题考查了参数方程化为普通方程、直线与椭圆相交弦长问题、一元二次方程的根与系数,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知与圆C:x2+y2-2x-2y+1=0相切的直线l分别交x轴和y轴正轴于A,B两点,O为原点,且|OA|=a,|OB|=b(a>2,b>2).求证:
(1)(a-2)(b-2)=2;
(2)求△AOB面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,AB是⊙O的直径,C为⊙O上一点,AD和过C点的切线互相垂直,垂足为D.
(Ⅰ)求证:AC平分∠DAB;
(Ⅱ)若AB=9,AC=6,求CD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数f(x)=logax-x+2(a>0,且a≠1)有且仅有两个零点的充要条件是(  )
A.0<a<1B.a>1C.1<a<2D.a>2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.将下列参数方程化成普通方程:
(1)$\left\{\begin{array}{l}{x=\frac{t+1}{t-1}}\\{y=\frac{2t}{{t}^{3}-1}}\end{array}\right.$;

(2)$\left\{\begin{array}{l}{x=3+15cosθ}\\{y=2+15sinθ}\end{array}\right.$(0≤θ<2π)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数f(x)=exsinx(e是自然对数的底数,e=2.71828…),若?x∈[0,$\frac{π}{2}$],f(x)≥ax,则实数a的取值范围是(  )
A.(-∞,$\frac{1}{4}$]B.(-∞,$\frac{1}{e}$]C.(-∞,$\frac{1}{2}$]D.(-∞,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知数列{an}是由正数组成的等比数列,Sn为其前n项和.已知a2a4=16,S3=7,则S5=(  )
A.15B.17C.31D.33

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数y=($\frac{1}{2-a}$)x+1+3(a<2),图象必经过点(-1,4).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.(1)若正数x,y满足x+3y=5xy,求3x+4y的最小值;
(2)已知a为正实数且a2+$\frac{b^2}{2}$=1,求a$\sqrt{1+{b^2}}$的最大值.

查看答案和解析>>

同步练习册答案