分析 (1)连接BC,利用弦切角定理得出△ADC∽△ACB,故而∠BAC=∠DAC;
(2)根据相似三角形列出比例式计算AD,从而得出CD.
解答 证明:(Ⅰ)连接BC,![]()
∵AB是⊙O的直径,则∠ACB=∠ADC=90°,
∵CD是⊙O的切线,∴∠DCA=∠CBA.
∴△ADC∽△ACB,
∴∠BAC=∠DAC,
∴AC平分∠DAB.
(Ⅱ)∵△ADC∽△ACB,∴$\frac{AB}{AC}=\frac{AC}{AD}$,
∴$\frac{9}{6}=\frac{6}{AD}$,解得AD=4,∴$CD=\sqrt{A{C^2}-A{D^2}}=2\sqrt{5}$.
点评 本题考查了圆的切线的性质,相似三角形的判定与性质,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5}{6}$π | B. | $\frac{1}{3}$π | C. | $\frac{1}{6}$π | D. | $\frac{2}{3}$π |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | g(x)在(1,+∞)上有最大值 | B. | g(x)在(1,+∞)上有最小值 | ||
| C. | g(x)在(1,+∞)上为减函数 | D. | g(x)在(1,+∞)上为增函数 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1<a≤3 | B. | a>2 | C. | 1<a<2 | D. | 2<a≤3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com