精英家教网 > 高中数学 > 题目详情
9.已知a∈R,函数f(x)=$\frac{1}{3}$x3-ax2+ax+2的导函数f′(x)在(-∞,1)内有最小值,若函数g(x)=$\frac{f′(x)}{x}$,则(  )
A.g(x)在(1,+∞)上有最大值B.g(x)在(1,+∞)上有最小值
C.g(x)在(1,+∞)上为减函数D.g(x)在(1,+∞)上为增函数

分析 利用导函数的最小值求出a的范围,然后求解新函数的导数,判断函数的单调性与最值.

解答 解:函数f(x)=$\frac{1}{3}$x3-ax2+ax+2的导函数f′(x)=x2-2ax+a.对称轴为:x=a,
导函数f′(x)在(-∞,1)内有最小值,
令x2-2ax+a=0,可得方程在(-∞,1)有两个根,可得$\left\{\begin{array}{l}{a<1}\\{△=4{a}^{2}-4a>0}\\{{1}^{2}-2a+a>0}\end{array}\right.$,解得:a<0
函数g(x)=$\frac{f′(x)}{x}$=x+$\frac{a}{x}$-2a.
g′(x)=1-$\frac{a}{{x}^{2}}$,
x∈(1,+∞),$\frac{a}{{x}^{2}}<0$,
1-$\frac{a}{{x}^{2}}>0$,∴g′(x)>0,
g(x)在在(1,+∞)上为增函数.
故选:D.

点评 本题考查函数与导数的应用,函数的单调性与函数的最值的求法,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.若执行如图所示的程序框图,若?是i<6,则输出的S值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知AB是圆C:(x-1)2+y2=1的直径,点P为直线x-y+3=0上任意一点,则$\overrightarrow{PA}$•$\overrightarrow{PB}$的最小值是(  )
A.2$\sqrt{2}$-1B.1-2$\sqrt{2}$C.7D.-7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=xex+ax2+2x+1在x=-1处取得极值.
(1)求函数f(x)的单调区间;
(2)若函数y=f(x)-m-1在[-2,2]上恰有两个不同的零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,AB是⊙O的直径,C为⊙O上一点,AD和过C点的切线互相垂直,垂足为D.
(Ⅰ)求证:AC平分∠DAB;
(Ⅱ)若AB=9,AC=6,求CD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若函数f(x)=cosx+axsinx,x∈(-$\frac{π}{2}$,$\frac{π}{2}$)存在零点,则实数a的取值范围是(  )
A.(0,+∞)B.(1,+∞)C.(-∞,-1)D.(-∞,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数f(x)=logax-x+2(a>0,且a≠1)有且仅有两个零点的充要条件是(  )
A.0<a<1B.a>1C.1<a<2D.a>2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数f(x)=exsinx(e是自然对数的底数,e=2.71828…),若?x∈[0,$\frac{π}{2}$],f(x)≥ax,则实数a的取值范围是(  )
A.(-∞,$\frac{1}{4}$]B.(-∞,$\frac{1}{e}$]C.(-∞,$\frac{1}{2}$]D.(-∞,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.若不等式ax2+bx-1>0的解集是{x|1<x<2}.
(1)试求a、b的值;
(2)求不等式$\frac{ax+1}{bx-1}$≥0的解集.

查看答案和解析>>

同步练习册答案