精英家教网 > 高中数学 > 题目详情
20.作出函数y=3sin($\frac{1}{2}$x+$\frac{π}{6}$)在长度为一个周期的闭区间上的简图.

分析 用五点法作函数y=Asin(ωx+φ)在一个周期上的简图.

解答 解:对于函数y=3sin($\frac{1}{2}$x+$\frac{π}{6}$),列表:

 $\frac{1}{2}$x+$\frac{π}{6}$ 0 $\frac{π}{2}$ π $\frac{3π}{2}$ 2π
 x-$\frac{π}{3}$ $\frac{2π}{3}$ $\frac{5π}{3}$ $\frac{8π}{3}$ $\frac{11π}{3}$
 y 0 3 0-3 0
作图:

点评 本题主要考查用五点法作函数y=Asin(ωx+φ)在一个周期上的简图,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=$\frac{1}{2}$x3-x2-$\frac{7}{2}$x,则f(-a2)与f(-1)的大小关系为f(-a2)≤f(-1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知f(x)是定义在R上的偶函数,导函数为f′(x),当x∈(-∞,0]时,f(x)有唯一的零点-3,且恒有xf′(x)<f(-x),则满足不等式$\frac{f(x)}{x}≤0$的实数x的取值范围是[-3,0)∪[3,+∞).(结果用集合或区间表示)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.△ABC的三个内角A、B、C的对边分别为a,b,c,A、B、C成等差数列,且$\overline{AB}•(\overline{AB}-\overline{AC})=18$.
(1)求ac的值;
(2)若sinA、sinB、sinC也成等差数列,试判断△ABC的形状,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.${∫}_{0}^{2}$($\sqrt{2x}$+$\sqrt{4-(x-2)^{2}}$)dx=$\frac{8}{3}$+π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.为贯彻“咬文嚼字抓理解,突出重点抓记忆”的学习思想.某校从高一年级和高二年级各选取100名同学进行现学段基本概念知识竞赛.图(1)和图(2)分别是对高一年级和高二年级参加竞赛的学生成绩按[40,50),[50,60),[60,70),[70,80]分组,得到的频率分布直方图.

(1)分别计算参加这次知识竞赛的两个年级学生的平均成绩;(注:统计方法中,同一组数据常用该组区间的中点值作为代表)
(2)完成下面2×2列联表,并回答是否有99%的把握认为“两个年级学生现学段对基本知识的了解有差异”?
成绩小于60分人数成绩不小于60分人数合计
高一年级
高二年级
合计
附:K2=$\frac{n(ad-bc)2}{(a+b)(c+d)(a+c)(b+d)}$.临界值表:
P(K2≥k)0.100.050.010
k2.7063.8416.635

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.某几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{3\sqrt{3}}{2}$B.2$\sqrt{3}$C.$\frac{5\sqrt{3}}{2}$D.3$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=$\sqrt{3}$sin2x+cos2x-1(x∈R);
(1)写出函数f(x)的最小正周期和单调递增区间;
(2)在△ABC中,角A、B、C所对的边分别是a、b、c,若f(B)=0,$\overrightarrow{BA}•\overrightarrow{BC}$=$\frac{3}{2}$,且a+c=4,试求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.据新华社报道,强台风“蝴蝶”在广东登陆.台风中心最大风力达到12级以上,大风降雨给灾区带来严重的灾害,不少大树被大风折断.某路边一树干被台风吹断后,树的上半部分折成与地面成45°角,树干也倾斜为与地面成75°角,树干底部与树尖着地处相距20米,则折断点与树干底部的距离是(  )
A.$\frac{20\sqrt{6}}{3}$ 米B.10$\sqrt{6}$ 米C.$\frac{10\sqrt{6}}{3}$ 米D.20$\sqrt{2}$ 米

查看答案和解析>>

同步练习册答案