精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=$\frac{1}{2}$x3-x2-$\frac{7}{2}$x,则f(-a2)与f(-1)的大小关系为f(-a2)≤f(-1).

分析 求导函数,确定函数的单调性,从而可得函数值的大小.

解答 解:求导函数可得f′(x)=$\frac{1}{2}$(x+1)(3x-7)
令f′(x)>0可得x<-1或x>$\frac{7}{3}$,
∴函数在(-∞,-1),($\frac{7}{3}$,+∞)上单调增,在(-1,$\frac{7}{3}$)上单调减
即函数f(x)在(-∞,-1]上单调递增,在[-1,0]单调递减
∴f(-1)是f(x)在(-∞,0]上的最大值
∵-a2≤0
∴f(-a2)≤f(-1).
故答案为:f(-a2)≤f(-1).

点评 本题考查函数值的大小比较,解题的关键是确定函数的单调性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.设双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的右焦点为F,过点F与x轴垂直的直线l交两渐近线于A,B两点,与双曲线的其中一个交点为P,设坐标原点为O,且$\overrightarrow{OP}$=m$\overrightarrow{OA}$+n$\overrightarrow{OB}$(m,n∈R),且mn=$\frac{2}{9}$,则该双曲线的渐近线为(  )
A.$y=±\frac{{\sqrt{3}}}{4}x$B.$y=±\frac{{\sqrt{2}}}{4}x$C.$y=±\frac{1}{2}x$D.$y=±\frac{1}{3}x$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数y=f(x),其导函数y=f′(x)的图象如图所示,则y=f(x)(  )
A.在(-∞,0)上为减函数B.在x=1处取极小值
C.在x=2处取极大值D.在(4,+∞)上为减函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设函数f(x)=$\frac{1}{3}{x^3}+m{x^2}$+1的导函数为f′(x),且f′(-1)=3.
(Ⅰ)求函数f(x)在点(1,f(1))处的切线方程;
(Ⅱ)求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设函数f(x)是定义在R上的函数,其中f(x)的导函数f′(x)满足f′(x)<f(x)对于x∈R恒成立,则(  )
A.f(2)>e2f(0),f(2016)>e2016f(0)B.f(2)<e2f(0),f(2016)>e2016f(0)
C.f(2)<e2f(0),f(2016)<e2016f(0)D.f(2)>e2f(0),f(2016)<e2016f(0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=lnx+ax(a∈R).
(1)当a=-1时,求函数f(x)的单调区间;
(2)如果函数g(x)=f(x)+$\frac{2}{x}$在(0,+∞)上单调递增,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设函数f(x),g(x)在(3,7)上均可导,且f′(x)<g′(x),则当3<x<7时,有(  )
A.f(x)>g(x)B.f(x)+g(3)<g(x)+f(3)C.f(x)<g(x)D.f(x)+g(7)<g(x)+f(7)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在平行六面体ABCD-A1B1C1D1中,AC与BD的交点为M,设$\overrightarrow{{A}_{1}{B}_{1}}$=$\overrightarrow{a}$,$\overrightarrow{{A}_{1}{D}_{1}}$=$\overrightarrow{b}$,$\overrightarrow{{A}_{1}A}$=$\overrightarrow{c}$,则$\overrightarrow{{D}_{1}M}$=(  )
A.-$\frac{1}{2}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow{b}$+$\overrightarrow{c}$B.$\frac{1}{2}$$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow{b}$+$\overrightarrow{c}$C.$\frac{1}{2}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow{b}$+$\overrightarrow{c}$D.-$\frac{1}{2}$$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow{b}$+$\overrightarrow{c}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.作出函数y=3sin($\frac{1}{2}$x+$\frac{π}{6}$)在长度为一个周期的闭区间上的简图.

查看答案和解析>>

同步练习册答案