| A. | f(x)>g(x) | B. | f(x)+g(3)<g(x)+f(3) | C. | f(x)<g(x) | D. | f(x)+g(7)<g(x)+f(7) |
分析 构造函数,设F(x)=f(x)-g(x),因为函数f(x),g(x)在(3,7)上均可导,且f′(x)<g′(x),所以F(x)在(3,7)上可导,并且F′(x)<0,得到函数的单调性,利用单调性得到F(7)<F(x)<F(3),即f(x)-g(x)<f(3)-g(3),得到选项.
解答 解:设F(x)=f(x)-g(x),因为函数f(x),g(x)在(3,7)上均可导,且f′(x)<g′(x),
所以F(x)在(3,7)上可导,并且F′(x)<0,
所以F(x)在(3,7)上是减函数,
所以F(7)<F(x)<F(3),即f(x)-g(x)<f(3)-g(3),
f(x)+g(3)<g(x)+f(3);
故选:B.
点评 本题考查了函数的单调性,关键构造函数,利用求导判断函数的单调性.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3\sqrt{3}}{2}$ | B. | 2$\sqrt{3}$ | C. | $\frac{5\sqrt{3}}{2}$ | D. | 3$\sqrt{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com