| A. | $y=±\frac{{\sqrt{3}}}{4}x$ | B. | $y=±\frac{{\sqrt{2}}}{4}x$ | C. | $y=±\frac{1}{2}x$ | D. | $y=±\frac{1}{3}x$ |
分析 求出A、C坐标,然后求出P的坐标,代入双曲线方程,利用mn=$\frac{2}{9}$,即可求出双曲线的离心率,即可求出双曲线的渐近线方程.
解答 解:由题意可知A(c,$\frac{bc}{a}$),B(c,-$\frac{bc}{a}$),
代入$\overrightarrow{OP}=m\overrightarrow{OA}+n\overrightarrow{OB}$=((m+n)c,(m-n)$\frac{bc}{a}$),
得P((m+n)c,(m-n)$\frac{bc}{a}$),代入双曲线方程$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1,
整理可得4e2mn=1,
因为mn=$\frac{2}{9}$,
所以可得e=$\frac{3\sqrt{2}}{4}$,
所以$\frac{c}{a}$=$\frac{3\sqrt{2}}{4}$,
所以1+$\frac{{b}^{2}}{{a}^{2}}$=$\frac{9}{8}$,
所以$\frac{b}{a}$=$\frac{\sqrt{2}}{4}$,
所以双曲线的渐近线方程为y=±$\frac{\sqrt{2}}{4}$x,
故选:B.
点评 本题考查双曲线的基本性质,考查双曲线离心率、渐近线的求法,考查计算能力.
科目:高中数学 来源: 题型:选择题
| A. | {x|-3<x<0或x>3} | B. | {x|x<-3或0≤x<3} | C. | {x|x<-3或x>3} | D. | {x|-3<x<0或0<x<3} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com