精英家教网 > 高中数学 > 题目详情

(本小题满分14分)如图在底面是矩形的四棱锥P-ABCD中,PA⊥底面ABCD, E、F分别是PC、PD的中点,求证:(1)EF∥平面PAB;
(2)平面PAD⊥平面PDC.

(1)∵分别是的中点,∴         2分
∵底面是矩形,∴.∴                 4分
平面平面
∥平面              7分
(2)∵
                   8分
∵底面是矩形,
                    10分

          12分

∴平面      14分

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(ii)当满足条件           ___________时,有.(填所选条件的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)如图,在中,上的高,沿折起,使 。
(Ⅰ)证明:平面ADB  ⊥平面BDC;
(Ⅱ)设E为BC的中点,求AE与DB夹角的余弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在三棱锥中,两两垂直,且,点是棱的中点.
(1)求异面直线所成角的余弦值;
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,正四棱柱中,设
若棱上存在点满足平面,求实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)如图是正三棱柱ABC-A1B1C1,AA1=3,AB=2,若N为棱AB的中点.
(1)求证:AC1∥平面CNB1
(2)求四棱锥C-ANB1A1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)如图4,在三棱柱中,底面是边长为2的正三角形,侧棱长为3,且侧棱,点的中点.

(1)求证:
(2)求证:平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,a∥b, ,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

如图,在直三棱柱ABC-A1B1C1中,∠ACB=90°,2AC=AA1=BC=2.若二面角B1-DC-C1的大小为60°,则AD的长为(  )

A. B. C.2 D.

查看答案和解析>>

同步练习册答案