如图,在直三棱柱ABC-A1B1C1中,∠ACB=90°,2AC=AA1=BC=2.若二面角B1-DC-C1的大小为60°,则AD的长为( )
A. | B. | C.2 | D. |
科目:高中数学 来源: 题型:解答题
(本小题满分14分)如图在底面是矩形的四棱锥P-ABCD中,PA⊥底面ABCD, E、F分别是PC、PD的中点,求证:(1)EF∥平面PAB;
(2)平面PAD⊥平面PDC.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(12分)如图,四边形ABCD是矩形,PA⊥平面ABCD,其中AB=3,PA=4,
若在线段PD上存在点E使得BE⊥CE,求线段AD的取值范围,并求当线段PD上有且只
有一个点E使得BE⊥CE时,二面角E—BC—A正切值的大小。
查看答案和解析>>
科目:高中数学 来源: 题型:单选题
如图,正方体ABCD-A1B1C1D1中,E,F分别在A1D,AC上,且A1E=A1D,AF=AC,则( )
A.EF至多与A1D,AC之一垂直 |
B.EF⊥A1D,EF⊥AC |
C.EF与BD1相交 |
D.EF与BD1异面 |
查看答案和解析>>
科目:高中数学 来源: 题型:单选题
[2013·广州质检]已知向量a=(2,-1,3),b=(-1,4,-2),c=(7,5,λ),若a,b,c三个向量共面,则实数λ等于( )
A. | B. | C. | D. |
查看答案和解析>>
科目:高中数学 来源: 题型:单选题
在空间直角坐标系中,定义:平面α的一般方程为:Ax+By+Cz+D=0(A,B,C,D∈R,且A,B,C不同时为零),点到平面α的距离为:,则在底面边长与高都为2的正四棱锥中,底面中心O到侧面的距离等于( )
A. | B. | C. | D. |
查看答案和解析>>
科目:高中数学 来源: 题型:单选题
已知空间三点A(-2,0,2),B(-1,1,2),C(-3,0,4),设a=,b=.若向量ka+b与ka-2b互相垂直,则k的值是( )
A.2 | B. |
C.或-2 | D.或2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com