精英家教网 > 高中数学 > 题目详情

已知向量,则以为邻边的平行四边形的面积为(  )

A.B.C.4D.8

B.

解析试题分析:首先由向量的数量积公式可求夹角的余弦值,然后根据同角三角函数的关系得,最后利用正弦定理表示平行四边形的面
考点:向量模的运算;利用正弦定理表示三角形的面积.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

在三棱锥中,两两垂直,且,点是棱的中点.
(1)求异面直线所成角的余弦值;
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,a∥b, ,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知=(2,4,5),=(3,x,y),若,则(  )

A.x=6,y=15
B.x=3,y=
C.x=3,y=15
D.x=6,y=

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(14分)(理)在三棱锥S-ABC中,△ABC是边长为4的正三角形,平面SAC
⊥平面ABC,SA=SC=2,M、N分别为AB、SB的中点。
(Ⅰ)证明:AC⊥SB;
(Ⅱ)求二面角N-CM-B的大小;
(Ⅲ)求点B到平面CMN的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

如图所示,ABCD-A1B1C1D1是棱长为6的正方体,E、F分别是棱AB、BC上的动点,且AE=BF.当A1、E、F、C1共面时,平面A1DE与平面C1DF所成二面角的余弦值为(  )

A.       B.         C.       D.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

△ABC的顶点分别为A(1,-1,2),B(5,-6,2),C(1,3,-1),则AC边上的高BD等于(  )

A.5 B. C.4 D.2

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

如图,在直三棱柱ABC-A1B1C1中,∠ACB=90°,2AC=AA1=BC=2.若二面角B1-DC-C1的大小为60°,则AD的长为(  )

A. B. C.2 D.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

直线l的方向向量为s=(-1,1,1),平面π的法向量为n=(2,x2+x,-x),若直线l∥平面π,则x的值为(  )

A.-2 B.- C. D.±

查看答案和解析>>

同步练习册答案