精英家教网 > 高中数学 > 题目详情

如图所示,ABCD-A1B1C1D1是棱长为6的正方体,E、F分别是棱AB、BC上的动点,且AE=BF.当A1、E、F、C1共面时,平面A1DE与平面C1DF所成二面角的余弦值为(  )

A.       B.         C.       D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图,在三棱锥S-ABC中,BC⊥平面SAC,AD⊥SC.
(I)求证:AD⊥平面SBC;
(II)试在SB上找一点E,使得BC//平面ADE,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面是矩形,平面,且,点是棱的中点,点在棱上移动.
(Ⅰ)当点的中点时,试判断直线与平面的关系,并说明理由;
(Ⅱ)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)如图,四边形ABCD是矩形,PA⊥平面ABCD,其中AB=3,PA=4,
若在线段PD上存在点E使得BE⊥CE,求线段AD的取值范围,并求当线段PD上有且只
有一个点E使得BE⊥CE时,二面角E—BC—A正切值的大小。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知中∠ACB=90°,AS=BC=1,AC=2,SA⊥面ABC,AD⊥SC于D,

(1)求证: AD⊥面SBC;
(2)求二面角A-SB-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知向量,则以为邻边的平行四边形的面积为(  )

A.B.C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

如图,正方体ABCD-A1B1C1D1中,E,F分别在A1D,AC上,且A1E=A1D,AF=AC,则(  )

A.EF至多与A1D,AC之一垂直
B.EF⊥A1D,EF⊥AC
C.EF与BD1相交
D.EF与BD1异面

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

在空间直角坐标系中,定义:平面α的一般方程为:Ax+By+Cz+D=0(A,B,C,D∈R,且A,B,C不同时为零),点到平面α的距离为:,则在底面边长与高都为2的正四棱锥中,底面中心O到侧面的距离等于(    )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

在坐标平面xOy上,到点A(3,2,5),B(3,5,1)距离相等的点有(  )

A.1个 B.2个 C.不存在 D.无数个

查看答案和解析>>

同步练习册答案