(本小题满分12分)
如图,在三棱锥S-ABC中,BC⊥平面SAC,AD⊥SC.
(I)求证:AD⊥平面SBC;
(II)试在SB上找一点E,使得BC//平面ADE,并证明你的结论.
科目:高中数学 来源: 题型:解答题
(12分)如图,三棱柱ABC-A1B1C1的所有棱长都为2,D为CC1中点,平面ABC
(Ⅰ)求证:AB1⊥平面A1BD;
(Ⅱ)求二面角A-A1D-B的余弦值;
(Ⅲ)求点C到平面A1BD的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)如图,在中,是上的高,沿把折起,使 。
(Ⅰ)证明:平面ADB ⊥平面BDC;
(Ⅱ)设E为BC的中点,求AE与DB夹角的余弦值。
查看答案和解析>>
科目:高中数学 来源: 题型:单选题
如图所示,ABCD-A1B1C1D1是棱长为6的正方体,E、F分别是棱AB、BC上的动点,且AE=BF.当A1、E、F、C1共面时,平面A1DE与平面C1DF所成二面角的余弦值为( )
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com